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Overview 

The control and coordination of multi-agent systems is a major scientific and 
technological challenge. When facing large-scale multi-agent settings where the agents 
are to act in flexible, hostile and distributed environments-such as those faced in military 
domains-the design of effective techniques for dealing with control, coordination, 
competition, and adaptation becomes a task of great importance. In recent years there has 
been growing interest in the application of methods and approaches from economics, for 
example the application of classic solutions from the theory of economic mechanism 
design to task allocation in non-cooperative dynamic environments. However, traditional 
economic methods lack many ingredients that are essential to make them applicable to 
large-scale computational multi-agent systems. In our work we tackle some of these basic 
issues. In particular, we address the allocation of complementary and substitutable tasks 
to self-interested agents, adaptation in hostile environments, coordination for the 
assignment of a task among self-interested bidders, computationally- motivated 
representations of economic interactions, and the updating of agents' beliefs after 
receiving new information. Our objective is therefore to introduce economic methods into 
the context of control and coordination of multi-agent systems, while generalizing and 
extending these methods to become efficient and effective. An important part of our 
approach is the identification and management of the deep computational problems 
which frequently arise in the control and coordination of large- scale multi-agent systems. 
We also present new theories which are essential for any flexible and dynamic practical 
multi-agent system.  

Our work in the COABS project may be seen as addressing five classes of problems:  

1. Combinatorial Auctions  

One primary economic mechanism upon which we chose to focus is the combinatorial 
auction. Combinatorial auctions involve the sale of multiple goods in a single auction, in 
cases where bidders' valuations may exhibit both complementarities (i.e., a bidder's 
willingness to pay for a bundle may exceed the sum of that bidder's valuation for each 
individual item in the bundle) and substitutability’s (e.g., a bidder may be willing to win 
only one of a set of bundles). To allow bidders to express complementarities in their 
valuations, combinatorial auctions allow bidders to request "all-or-nothing" bundles of 
goods; bidders may also bid on subsets of these bundles if they are interested. To allow 
bidders to express substitutability’s in their valuations, combinatorial auctions allow 
bidders to designate a set of bids as mutually exclusive-i.e., to indicate that only one of 
these bids is allowed to win, even if the seller would otherwise prefer to select more than 
one of these bids. Combinatorial auctions can lead to increased social welfare and/or 
seller revenue, but they come at a computational cost. Determining the set of winning 
bids in a combinatorial auction is an NP-hard computational problem. Nevertheless, we 
developed techniques to solve problems of interesting size by using a variety of different 
optimization techniques; we also investigated the design of test data for benchmarking 
such optimization algorithms. Our other research on combinatorial auctions included I 
investigating bidder strategies when goods are allocated through sequential, single-good 
auctions, and an alternative mechanism that maintains incentive compatibility even 
though goods are not always allocated to the bidders willing to pay the most for them.  
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All of these papers, and the papers in the following sections, may be found in the 
appendix:  

 Sequential Auctions for the Allocation of Resources with Complementarities (C. 
Boutilier, M. Goldszmidt and B. Sabata): presented at IJCAI-99.  

 Taming the Computational Complexity of Combinatorial Auctions: Optimal and 
Approximate Approaches (Fujishima, Leyton-Brown, Shoham): presented at IJCAI- 99.  

 .Incentive Compatibility in Rapid, Approximately Efficient Combinatorial Auctions (D 
Lehmann, L. O'Callahan, and Y. Shoham): presented at the First ACM Conference on 
Electronic Commerce (EC'99)  

 An Algorithm for Multi-Unit Combinatorial Auctions (K. Leyton-Brown, M. 
Tennenholtz, Y. Shoham): presented at Games-2000, AAAI-2000 and the International 
Symposium for Mathematical Programming (ISMP-2000).  

 Towards a Universal Test Suite for Combinatorial Auctions (Leyton-Brown, Pearson, 
Shoham): EC-OO.  

 
2. Adaptation in Multi-Agent Settings  

 
Studying adaptation in multi agent settings was an important component of our research 
agenda. Indeed, the simultaneous adaptation of multiple agents has profound impact on 
the design of robust command and control methods. The phenomenon of adaptation in 
multi-agent systems is considerably different from adaptation in the single-agent case. 
This is true because the fact that multiple agents simultaneously adapt to each other 
implies that even simple adaptation rules can lead to complex behaviors. In order to 
tackle this issue we addressed the problem of reinforcement learning in various classes of 
stochastic games. Stochastic games extend upon and incorporate features of repeated 
games and Markov Decision Processes (MDPs), and are a very general model of multi- 
agent interaction. Our work on this topic had two main threads. First, we studied 
algorithms that could learn bidding policies in complex auction settings, and investigated 
the behavior of these algorithms. Second, we developed a reinforcement learning 
algorithm for stochastic games that finds near-optimal policies in polynomial time, and 
which also introduces a new approach for dealing with the exploration vs. exploitation 
tradeoff.  

 Continuous Value Function Approximation for Sequential Bidding Policies (C. Boutilier, 
M. Goldszmidt and B. Sabata): presented at the Fifteenth Annual Conference on 
Uncertainty in Artificial Intelligence (UAI-99).  

 Conditional, Hierarchical Multi-Agent Preferences (?): presented at the Seventh . 
Conference on Theoretical Aspects of Rationality and Knowledge (TARK VII). l  

 Sequential Optimality and Coordination in Multi-agent Systems (C. Boutilier): . 
presented at ?  

 R -max: A near optimal polynomial time reinforcement learning algorithm, (Ronen 
Brafman and Moshe Tennenholtz): presented at UCAI'Ol.  

3. Mechanism Design  

One of the principal techniques for the control of multi-agent systems is the deployment  
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of an economic mechanism which will influence agents' behavior by giving them 
incentives for taking desirable actions. This mechanism design approach underlies a 
number of the research projects we undertook as part of our participation in the COABS 
project; because they are all so diverse we survey. them individually here.  

Ascending bid auctions-such as the familiar English-style auction of Sotheby and eBay-
suffer the problem of being unpredictably long. This is unacceptable in mission critical, 
urgent applications, of the sort encountered in the military. The alternative-- running a 
quick, one-shot sealed-bid auction-has the advantage of being fast, but unfortunately it 
does not posses the nice optimization properties of ascending-bid auctions in the presence 
of so-called common values. We were able to devise a novel auction mechanism, which 
combines the merits of both.  

Finding ways of designing smart agents to assist bidders in auctions is fundamental to 
introducing agents' coordination to the context of economic mechanisms design. Our 
research emphasized protocols for coordinating groups of bidders through the paradigm 
of "bidding clubs"-groups of bidders who share information before participating in an 
auction, in such a way that all the members of a bidding club benefit. In our first paper on 
this topic we developed basic bidding club protocols for five fundamental auction 
settings; in our second paper we conducted a more rigorous and general theoretical 
analysis of bidding clubs in first-price auctions.  

"Rational computation" presents a new model of computation based upon principles of 
rationality, which, we argue, are appropriate in a non-cooperative computing 
environment such as the Internet. In this work we developed a theory which looks at 
markets as computing devices and attempts to quantify their computing power.  

Although VCG mechanisms have many appealing properties, their essential intractability 
prevents them from being used for complex problems like combinatorial auctions. We 
introduced a general way to overcome this intractability and proved its properties.  

As we consider the use of auctions for resource allocation we must take into account the 
possibility-and in some cases virtual certainty-that agents will hide their true identities, so 
that it becomes impossible not only to know who is behind a given bid but even whether 
two different bids were submitted by the same bidder. This has profound effect on the 
outcome of the auction, as the bidders learn to manipulate the auction by I using this 
anonymity feature. We were able to characterize the equilibria of some auctions in such 
settings, which provides the first step towards designing auctions that can withstand 
anonymity.  

 Speeding Up Ascending-Bid Auctions (Y. Fujisima, D. McAdams, and Y. Shoham): 
presented at IJCAI-99.  

 Bidding Clubs: Institutionalized Collusion in Auctions (K. Leyton-Brown, M. 
Tennenholtz, and Y. Shoham): presented at Games-2000, EC-OO, Brown University. 
.Rational computation (M. Tennenholtz, and Y. Shoham): published in AIl.  

 Bidding Clubs for First-Price Auctions (Leyton-Brown, Shoham and Tennenholtz): 
submitted to GEB.  

 Mechanism Design With Incomplete Languages (Ronen): presented at EC-OI.  
 Anonymous bidding in auctions (Yossi Feinberg and Moshe Tennenholtz): submitted to 

GEB.  
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4. Representation  

Bayesian networks-graphical representations of probability distributions that explicitly 
describe independences inherent in these distributions-revolutionized the field of 
probabilistic inference. By capturing the underlying structure of distributions, they 
allowed for algorithms that made inference tractable in practice. We have studied the 
possibility of finding structured representations for games which give similar tractability 
benefits. We began by studying possible ways of graphically representing utilities. The 
idea is that such representations capture structure inherent in the utility functions in the 
same way that Bayesian networks capture independences in probability distributions. 
Next, we introduced Game networks (G nets), a novel representation for multi-agent 
decision problems. Compared to other game-theoretic representations, such as strategic or 
extensive forms, G nets are more structured and more compact; more fundamentally, G 
nets constitute a computationally advantageous framework for strategic inference, as both 
probability and utility independencies are captured in the structure of the network and can 
be exploited in order to simplify the inference process. An important aspect of multi- 
agent reasoning is the identification of some or all of the strategic equilibria in a game; 
we presented original convergence methods for strategic equilibrium which can take 
advantage of strategic separabilities in the G net structure in order to simplify the 
computations. We introduced Multi-Agent Influence Diagrams (MAIDs), which 
generalize the familiar Bayesian Network generalization of (single-agent) influence 
diagrams to the multi-agent case. Finally, we developed a novel approach to computing 
all equilibria of a multi agent game, based on homotopy methods and closely related to 
simulated annealing used in AI.  

 Expected Utility Networks (P. La Mura and Y. Shoham): presented at UAI'99.  
 Game Networks (P. La Mura): presented at the Sixteenth Conference on Uncertainty in 

Artificial Intelligence (UAI'OO).  
 Probabilistic Models for Agents' Beliefs and Decisions (B. Milch and D. Koller): I 

presented at UAl'QQ.  
 Simulated Annealing of Game Equilibria: A Simple Adaptive Procedure Leading to ~  
 Nash Equilibrium (P. La Mura and M. Pearson): presented?  

5. Belief Revision and Belief Fusion  

Often we want to combine the expertise of multiple experts in hopes of coming up with 
information that improves on all their individual beliefs. We studied the problem of 
automating this process. We considered different common representations, both 
qualitative and quantitative, of sources' beliefs and studied how information about the 
sources' expertise can be used to combine their beliefs in rigorous, justified ways. Our 
initial focus in solving this problem was on the situation where agents' belief states are 
represented as qualitative binary relations over possible worlds. Such representations are 
common in the belief revision community to represent not only agents' beliefs, but their 
counterfactual beliefs as well, i.e., not only what they believe at the moment, but what 
they would believe if the situation were somewhat different.  

We introduced a novel belief fusion operator that aggregates the beliefs of two agents, 
each informed by a subset of sources (strictly) ranked by reliability. In the process we  
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defined pedigreed belief states, which enrich standard belief states with the source of 
each piece of information. We noted that the fusion operator satisfies the invariants of 
idempotence, associativity, and commutativity. As a result, it can be iterated without 
difficulty. We also defined belief diffusion; whereas fusion generally produces a belief 
state with more information than is possessed by either of its two arguments, diffusion 
produces a state with less information.  

We considered the problem of representing collective beliefs and aggregating these 
beliefs when there may be conflicting sources of equal rank. We described a way to 
construct the belief state of an agent informed by a set of sources of varying degrees of 
reliability, giving a simple set-theory-based operator for combining the information of 
multiple agents. We also described a computationally effective way of computing the 
resulting belief state.  

Ensemble learning algorithms combine the results of several classifiers to yield an 
aggregate classification. We presented a normative evaluation of combination methods, 
applying and extending existing axiomatizations from Social Choice theory and 
Statistics. For the case of multiple classes, we showed that several seemingly innocuous 
and desirable properties are mutually satisfied only by a dictatorship. A weaker set of 
properties admit only the weighted average combination rule. We exemplified these 
theoretical results with experiments on stock market data, demonstrating how ensembles 
of classifiers can exhibit canonical voting paradoxes.  

Finally, we shifted our attention to the problem of aggregating beliefs when they are 
represented as probabilistic distributions. We proposed a framework, in which we 
assumed that nature generates samples from a 'true' distribution and different experts I 
form their beliefs based on the subsets of the data they have a chance to observe. We 
showed that the well-known aggregation operator LinOP is ideally suited for use in our ~ 
framework, and proposed a LinOP-based learning algorithm, inspired by the techniques 
developed for Bayesian learning, which aggregates the experts' distributions represented 
as Bayesian networks.  

 From Belief Revision to Belief Fusion (P. Maynard-Reid II and Y. Shoham): presented at 
the Third Conference on Logic and the Foundations of Game and Decision Theory 
(LOFT3).  

 Belief Fusion: Aggregating Pedigreed Belief States (P. Maynard-Reid II and Y. Shoham): 
published in the Journal of Logic, Language, and Information.  

 Representing and Aggregating Conflicting Beliefs (p. Maynard-Reid II and D. Lehmann): 
presented at the Seventh International Conference on Knowledge Representation and 
Reasoning (KR '00).  

 A Normative Examination of Ensemble Learning Algorithms (D. Pennock, P. Maynard-
Reid ll, C. L. Giles, and E. Horvitz): presented at the Seventeenth International 
Conference on Machine Learning (ICML '00).  

 Aggregating Learned Probabilistic Beliefs (P. Maynard-Reid II and U. Chajewska): presented at 
UAI'OI.  
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Abstract
In combinatorial auctions, multiple goods are sold
simultaneously and bidders may bid for arbitrary
combinations of goods. Determining the outcome
of such an auction is an optimization problem that
is NP-complete in the general case. We propose
two methods of overcoming this apparent intrac-
tability. The first method, which is guaranteed to
be optimal, reduces running time by structuring
the search space so that a modified depth-first
search usually avoids even considering alloca-
tions that contain conflicting bids. Caching and
pruning are also used to speed searching. Our
second method is a heuristic, market-based ap-
proach. It sets up a virtual multi-round auction in
which a virtual agent represents each original bid
bundle and places bids, according to a fixed
strategy, for each good in that bundle. We show
through experiments on synthetic data that (a) our
first method finds optimal allocations quickly and
offers good anytime performance, and (b) in
many cases our second method, despite lacking
guarantees regarding optimality or running time,
quickly reaches solutions that are nearly optimal.

1 Combinatorial Auctions
Auction theory has received increasing attention from
computer scientists in recent years.1 One reason is the
explosion of internet-based auctions. The use of auctions
in business-to-business trades is also increasing rapidly
[Cortese and Stepanek, 1998]. Within AI there is growing
interest in using auction mechanisms to solve distributed
resource allocation problems. For example, auctions and
other market mechanisms are used in network bandwidth
allocation, distributed configuration design, factory
scheduling, and operating system memory allocation

1 This material is based upon work supported by DARPA un-
der the CoABS program, contract #F30602-98-C-0214, and by
a Stanford Graduate Fellowship.

[Clearwater, 1996]. Market-oriented programming has
been particularly influential [Wellman, 1993; Mullen and
Wellman, 1996].

The value of a good to a potential buyer can depend on
what other goods s/he wins. We say that there exists
complementarity between goods g and h to bidder b if
ub({g,h})> ub({g})+ub({h}), where ub(G) is the utility to b
of acquiring the set of goods G. If goods g and h were
auctioned separately, it is likely that neither of the typi-
cally desired properties for auctions—efficiency and
revenue maximization—would hold. One way to ac-
commodate complementarity in auctions is to allow bids
for combinations of goods as well as individual goods.
Generally, auctions in which multiple goods are auctioned
simultaneously and bidders place as many bids as they
want for different bundles of goods are called combina-
torial auctions2.

It is also common for bidders to desire a second good
less if they have already won a first. We say that there
exists substitutability between goods g and h to bidder b
when ub({g,h}) < ub({g})+ub({h}). A common example of
substitutability is for a bidder to be indifferent between
several goods but not to want more than one. In order to be
useful, a combinatorial auction mechanism should provide
some way for bidders to indicate that goods are substi-
tutable.

Combinatorial auctions are applicable to many
real-world situations. In an auction for the right to use
railroad segments a bidder desires a bundle of segments
that connect two particular points; at the same time, there
may be alternate paths between these points and the bidder
needs only one [Brewer and Plott, 1996]. Similarly, in the
FCC spectrum auction bidders may desire licenses for
multiple geographical regions at the same frequency band
while being indifferent to which particular band they re-
ceive [Milgrom, 1998]. The same situation also occurs in
military operations when multiple units each have several
alternate plans and each plan may require a different
bundle of resources.

2 Auctions in which combinatorial bidding is allowed are al-
ternately called combinatorial and combinational.

Taming the Computational Complexity of Combinatorial Auctions:
Optimal and Approximate Approaches

Yuzo Fujishima, Kevin Leyton-Brown and Yoav Shoham
Computer Science Department, Stanford University, Stanford CA, 94305

fujisima@ccs.mt.nec.co.jp (visiting from NEC Corporation)
kevinlb@cs.stanford.edu
shoham@cs.stanford.edu
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While economics and game theory provide many in-
sights into the potential use of such auctions, they have
little to say about computational considerations. In this
paper we address the computational complexity of com-
binatorial auctions.

2 The Complexity Problem
There has been much work in economics and game theory
on designing combinatorial auctions. The
Clarke-Groves-Vickrey mechanism (also known as the
Generalized Vickrey Auction, or GVA) has been particu-
larly influential [Mas-Colell et al., 1995; Varian, 1995]. It
is beyond the scope of this paper to review such mecha-
nisms, but they share a central problem: given a collection
of bids on bundles, finding a set of non-conflicting bids
that maximizes revenue. (A more precise definition is
given in Section 3.) This problem is easily shown to be
NP-complete3 [Rothkopf et al., 1995].

Several methods have been conceived to cope with the
computational complexity of combinatorial auctions, most
aiming to ease the difficulty of finding optimal allocations.
They can be classified into three categories based on the
strategies they use.

One strategy is to restrict the degree of freedom of
bidding to simplify the task of finding optimal allocations.
Rothkopf et al. show that an optimal allocation can be
found in polynomial time if (1) each bid contains no more
than two goods; (2) for any two bids, either they are dis-
joint or one is a subset of the other; or (3) each bid contains
only consecutive goods given a one-dimensional ordering
of goods [Rothkopf et al., 1995].

Another strategy is to shift the burden of finding an
optimal allocation to bidders. [Banks et al., 1989] and
[Bykowsky et al., 1995] have reported a mechanism called
AUSM in which non-winning bids are pooled in a stand-by
queue. Bidders can combine their bids with other bids
currently in the queue to form new allocations. A new
allocation is adopted if it generates more revenue than the
previously best allocation.

A third strategy is to attempt to find an optimal alloca-
tion but to be satisfied with a sub-optimal allocation when
the expenditure of further resources becomes unacceptable.
In other words, the optimality of the allocation is
traded-off with the resources required, especially time.

In this paper we present two algorithms. The first is an
anytime algorithm that attempts to exploit a problem’s
particular bid structure to reduce the size of the search. It
also reduces search time by caching partial results and by
pruning the search tree. The second algorithm uses a
market-based approach to determine an acceptable allo-
cation, although it is not guaranteed to find an optimal one.
We then show results of experiments with synthetic data
suggesting that these methods, though not provided with
formal guarantees, appear to have surprisingly good per-

3 The GVA has the additional shortcoming of requiring bidders
to submit an unreasonably large number of bids, but we do not
address this issue here.

formance. Additionally, the market-based approach ap-
pears to produce allocations that are always optimal or
nearly optimal.4

3 Precise Problem Statement
In this paper we propose two methods for finding desirable
allocations based on bids submitted. We start by formally
defining the optimization problem. Denote the set of goods
by G and the set of non-negative real numbers by R+. A bid
b=(pb,Gb) is an element of S= R+×(2G-{∅}). Let B be a
subset of S. A set F⊆B is said to be feasible if ∀b,c≠b∈F
Gb∩Gc=∅. Denote the set of all feasible allocations for B
by Φ(B). Further, let G(B)=∪b∈BGb be the set of goods
contained in the bids of B.

[Problem] Find an allocation W∈Φ(B) such that
∀F∈Φ(B) ∑b∈Fpb≤∑b∈Wpb. Such an allocation is said to be
optimal or revenue maximizing.

What kind of value interrelation between goods can be
represented by the bids defined above? Clearly, comple-
mentary values are easily accommodated. Suppose a bid-
der bids $20 for each of {g} and {h}, and $50 for {g,h}. In
this case any revenue-maximizing algorithm will correctly
select the {g,h} bid instead of {g} and {h}.

This bid format is also sufficient for representing sub-
stitutability through an encoding trick. Suppose a bidder is
willing to pay $20 for {g} and $30 for {h} but only $40 for
{g,h}. In this case, bids cannot be submitted as before
since the revenue-maximizing algorithm would select the
pair {g} and {h} over {g,h}, charging the bidder $50 in-
stead of $40 for g and h. However, this problem can be
solved by the introduction of ‘dummy goods’—virtual
goods that enforce an exclusive-or relationship. (Each
dummy good must appear only in a single bidder’s bids.)
In our example, the bidder could submit the following
bids: ($20, {g,d}), ($30, {h,d}), and ($40, {g,h}) where d
is a new, unique dummy good. The first two bids are now
mutually exclusive and so will never be allocated together.
This technique can lead to a combinatorial explosion in the
number of bids if many goods are substitutable, but in
many interesting cases this does not arise.

4 CASS Algorithm
When the number of goods and bids is small enough, an
exhaustive search can be used to determine the optimal
allocation. We propose an algorithm, Combinatorial
Auction Structured Search (CASS), presented as a naïve
brute-force approach followed by four improvements.
CASS considers fewer partial allocations than the
brute-force method because it structures the search space
to avoid considering allocations containing conflicting
bids. It also caches the results of partial searches and
prunes the search tree. Finally, it may be used as an any-

4 We do not analyze the impact of the approximation on the
equilibrium strategies in auction mechanisms such as GVA; we
will address this issue in a future paper.
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time algorithm, as it tends to find good allocations quickly.

4.1 Brute-Force Algorithm
Suppose there are |G| goods 1, 2, ..., |G|, and |B| bids 1, 2,
…, |B|. First, bids that will never be part of an optimal
allocation are removed. That is, if for bid bk=(pk,Gk) there
exists a bid bl=(pl,Gl) such that pl >pk and Gl⊆Gk, then bk is
removed because it can always be replaced by bl, in-
creasing revenue. Then for each good g, if there is no bid
b=(x,{g}) a dummy bid b=(0,{g}) is added.

Our brute-force algorithm examines all feasible alloca-
tions through a depth-first search. Let x be the first bid and
y be the last bid. Our implementation follows:

1. If x does not conflict with the current allocation, add
x to the current allocation

2. Increment x
3. If more bids can be added to the allocation, go to 2.
4. Update best revenue and allocation observed so far.
5. If y is contained in the current allocation, remove it,

set x=y+1 and repeat from 2.
6. Decrement y.
7. If y is not the first bid, go to 5.

4.2 Improvement #1: Bins
A great deal of unnecessary computation is avoided in the
brute-force algorithm by checking whether bids conflict with
the current allocation before they are added. However, work
is still required to determine that a combination is infeasible
and to move on to the next bid. It would be desirable to
structure the search space to reduce the number of infeasible
allocations that are considered in the first place.

We can reduce the number of infeasible allocations con-
sidered by sorting bids into bins, Di, containing all bids b
where good i ∈ Gb and for all j such that j∈[1, i-1], j ∉ Gb.
Rather than always trying to add each bid to our allocation,
we add at most one bid from every bin since all bids in a
given bin are mutually exclusive.

In fact, we can often skip bins entirely. While considering
bin Di, if we observe that good j>i is already part of the al-
location then we do not need to consider any of the bids in Dj.
In general, instead of considering each bin in turn, skip to Dk

where k∉G(F) and ∀i<k, i∈G(F).

4.3 Improvement #2: Caching
Let Fi be the partial allocation under consideration when Di is
reached during a search. Define Ci ⊆ G(Fi) where ∀j ∈ G(Fi),
j>i ↔ j ∈ Ci. Note that there are many different partial al-
locations Fi1, Fi2, etc., that share the same Ci, and that if
Ci1=Ci2 then the search trees for Fi1 and Fi2 are identical
beyond Di. It is therefore possible to cache partial searches
based on Ci. However, caching all possible values of Ci

would require a cache of size 2|G|-(i-1), which would quickly
become infeasible. Therefore, we only cache when Ci in-
cludes no more than k goods, where k is a threshold defined at

runtime for each bin. Di requires a cache of size
∑
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j j
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4.4 Improvement #3: Pruning #1
Performance can be improved by backtracking whenever a
given search path is provably unable to lead to a new best
allocation. We can prune whenever C (Fi1) ⊂ C (Fi2) and
p(Fi2) + p(cache (Fi1)) ≤ bestAllocation. In this case, the sum
of the revenue from the cached path beyond Fi1 and the
revenue leading up to Fi2 is less than the revenue from the
best allocation seen so far. Since Fi1 allocates a superset of
the goods allocated in Fi2 (thus overestimating revenue), a
better allocation would not be found by expanding Fi2.

4.5 Improvement #4: Pruning #2
We can also backtrack when it is provably impossible to
add any bids to the current allocation to generate more
revenue than the current best allocation. Before
starting the search we calculate an overestimate of the
revenue that can be achieved with each good, o(g) =

||/)(max
|

b
bgb

Gbp
∈

. o(g) is the largest average price per bid

of bids containing good g. We backtrack at any point
during the search with allocation F if p(F) + ∑

∉Fg

go )( ≤

p(best_allocation). This technique is most effective when
good allocations are found quickly. Finding good alloca-
tions quickly is also useful if a solution is required before
the algorithm has completed (i.e., if CASS is used as an
anytime algorithm). We have found that good allocations
are found early in the search when the bids in each bin are
ordered in descending order of average price per good.
Similarly, the pruning technique is most effective when
the unallocated goods are those with the lowest o(g) val-
ues. To achieve this, we reorder bins so that for any two
bins i and j, o(gi) > o(gj) ↔ i < j.

5 VSA Algorithm
Our second algorithm is called Virtual Simultaneous
Auction (VSA). This market-based method was inspired
by market-oriented programming [Wellman, 1993; Mullen
and Wellman, 1996] and the simultaneous ascending auc-
tion [Milgrom, 1998]. VSA generates a virtual simulta-
neous auction from the bids submitted in a real combina-
torial auction, then simulates the virtual auction to find a
good allocation of goods in the real auction.

5.1 Algorithm
First, a virtual simultaneous auction is generated based on
the bids submitted in a real combinatorial auction. For
each bid b=(pb,Gb) a virtual bidder vb is created. The vir-
tual bidders compete in a virtual simultaneous auction that
has multiple rounds. Each virtual bidder vb tries to win all
the goods in Gb for the price pb on an all-or-nothing basis.
The virtual auction starts with no goods allocated and the
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prices of all goods set to zero. The simultaneous auction is
repeated round by round until either an optimal allocation
is found or a pre-set time deadline is reached. In the latter
case the current best allocation is adopted as the final
result.

Each round of VSA has three phases: the virtual auction
phase, the refinement phase and the update phase. In the
virtual auction phase each virtual bidder bids for the goods
they want. Each individual good is allocated to the highest
bidder. If a bidder succeeds in winning all desired goods,
that bidder becomes a temporary winner. Otherwise the
bidder becomes a temporary loser and returns all allocated
goods to the auctioneer. In the refinement phase each of
the losers is examined in a random order to see whether
making that agent a temporary winner (and consequently
making a different winner into a loser) would increase
global revenue. If so, the list of winners is updated. Fi-
nally in the update phase the current highest price of each
good is changed to reflect the price that its current winner
bid. The current highest price for unallocated goods is
reset to zero.

Virtual bidders in VSA follow a simple strategy. If a
bidder was the temporary winner in the previous round, the
bidder does not bid in the current round. Otherwise, agents
calculate the sum of the current highest prices of the goods
required. If the sum exceeds an agent’s budget, the agent
does not bid because the agent will not be able to acquire
all the goods simultaneously. If the sum is less than the
budget, the agent bids such that the surplus (budget - sum)
is equally divided among the goods.

5.2 Properties
In certain circumstances, VSA will find an optimal allo-
cation. Additionally, it is sometimes possible to detect if
an optimal allocation has been found, allowing the virtual
auction to end before the deadline.

[Theorem] If no virtual bidder bids in a round in the vir-
tual auction, the current set of winners is optimal.

[Proof] Assume that no agents bid in a given round. De-
fine the function that calculates the revenue of an alloca-
tion F by r(F)=∑b∈Fpb and let O denote the optimal set of
winners. Split the current set of winners W into two parts
O1 and W2 such that O1=O∩W and W2=W∩¬O1. Also split
O into O1 and O2 such that O1 is defined as before and O2 =
O ∩ ¬O1. Further, split G into G1 and G2 such that
G1=∪b∈O1Gb and G2=G∩¬G1. By the assumption, for each
currently losing bidder, the sum of the current highest
prices of the goods needed exceeds the bidder’s budget.
This is especially true for bidders in O2, i.e., ∀b∈O2

pb<∑g∈Gbhg where hg is the current highest price of good g.
It follows that r(O2) = ∑b∈O2pb ≤ ∑b∈O2∑g∈Gbhg ≤ ∑g∈G2hg =
∑b∈W2∑g∈Gbhg = ∑b∈W2pb = r(W2). (Remember that the
minimum price of a good that is not allocated to any agent
is zero and agents always bid their entire budgets.) The
inequality means that W is optimal because r(O) =
r(O1)+r(O2) ≤ r(O1)+r(W2) = r(W).

However, there is no guarantee that auctions will always

finish, even if an optimal allocation is found.

[Theorem] There exists a set of bids B such that at least
one virtual bidder always bids in every round of the virtual
auction no matter what bidding strategy is used.

[Proof] Suppose B={a,b,c} where a={pa, {1,2}}, b={pb,
{2,3}}, and c={pc, {3, 1}}. Suppose further that pa < pb +
pc, pb < pc + pa, and pc < pa + pb. Because the real bids are
mutually exclusive, at most one virtual bidder becomes the
temporary winner. If none is winning, h1=h2=h3=0 and all
the bidders bid in the current round. Assume here that
bidder a is currently winning. Then h1+h2=pa and h3=0.
Assume that neither b nor c bids in the current round. Then
for each of b and c, the sum of the prices of goods needed
must be larger than or equal to the budget, i.e.,
h2+h3=h2≥pb and h3+h1=h1≥pc. This means that pa =
h1+h2≥pb+pc and contradicts pa<pb+pc. This argument
doesn't depend on the bidding strategy as long as an agent
bids if and only if their budget exceeds the sum of the
minimum prices of the goods needed.

It is this property that makes the refinement phase of
VSA important. Consider the case B=B1∪B2∪... where
∀i,j G(Bi)∩G(Bj)=∅, |Bi|=3 and each Bi satisfies the con-
dition from the proof above. If we omit the refinement
phase then the winner in each subset changes every round
except the case where there is no winner. Therefore, an
optimal global allocation is examined only when in every
subset the optimal winner is temporarily winning. Such
synchronization is unlikely to occur unless the number of
subsets is very small. The refinement phase causes the
optimal winners to become the temporary winners in every
round, leading to an optimal allocation even though it is
not detected as optimal. (In some cases where ∃i,j
G(Bi)∩G(Bj)≠∅ or |Bi| > 3 an optimal allocation may be
impossible to achieve regardless of the time limit.)

6 Experimental Evaluation
As we have not yet determined each algorithm’s formal
complexity characteristics we conducted empirical tests.
We evaluated (1) how running time varies with the number
of bids, and (2) how percentage optimality of the best
allocation varies with time, given a particular bid distri-
bution and a fixed number of bids and goods.

6.1 Assumptions and Parameters
The space of this problem is large. Roughly speaking it has
three degrees of freedom: the number of goods, the num-
ber of bids and the distribution of bids. Most problematic
among these is the distribution. Precisely because of the
computational complexity of combinatorial auctions there
is little or no real data available. In the absence of such
data we tested our algorithms against bids drawn randomly
from specific distributions.

Throughout the experiments we used the following
two distribution functions to determine how often a
bid for n goods appears. The first is binomial,
fb(n)=pn(1-p)N-nN!/(n!(N-n)!), p=0.2, in which the prob-
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ability of each good being included in a given bid is in-
dependent of which other goods are included. The second
distribution is of exponential form, fe(n)=Ce-x/p, p=5,
representing the case where a bid for n+1 goods appears
e-1/p times less often than a bid for n goods. The prices of
bids for n goods is uniformly distributed between
[n(1-d), n(1+d)], d=0.5.

We do not present any experiments varying the number
of goods in this paper because of space constraints. We
found that for both CASS and VSA running time increased
exponentially with the number of goods.

We ran our experiments on a 450MHz Pentium II with
256MB of RAM, running Windows NT 4.0. 30 MB of
RAM was used for the CASS cache. All algorithms were
implemented in C++.

6.2 Results
To answer question (1) we measured the running time of
CASS, VSA and the brute-force algorithm. Since VSA is
not guaranteed to reach the optimal revenue, it was passed
this value—calculated by CASS—and stopped when it
found an allocation with revenue of at least 95% of opti-
mal. All the results reported here are averages over 10
different runs. Figure 1 shows running time as a function
of the number of bids with a binomial distribution, with
the number of goods fixed at 30. Figure 2 shows the same
thing for an exponential distribution, without the
brute-force algorithm. To answer question (2), we
measured the optimality of the output of both VSA and
CASS as a function of time. Figure 3 shows both algo-
rithms’ performance with 15000 bids for 150 goods with a
binomial distribution and Figure 4 shows 4500 bids for 45
goods with an exponential distribution.

6.3 Discussion
CASS demonstrates excellent performance both in finding
optimal allocations and as an anytime algorithm. In Fig-
ures 1 and 2 CASS remains roughly an order of magnitude
faster than VSA as the number of bids increases. Both
curves appear to grow sub-linearly on the logarithmic
graph, suggesting polynomial-time performance. As the
size of the problem is increased (Figures 3 and 4) CASS
still performs better than VSA for the binomial distribu-
tion, but initially offers worse anytime performance for the
exponential distribution. These results—and other ex-
periments we have conducted—suggest that VSA is most
likely to outperform CASS when the number of goods is
relatively large compared to average bid length. (Note that
VSA runs to a time limit, so the point at which VSA’s
curve ends is not meaningful.)

CASS’s effectiveness is strongly influenced by the
distribution of bids, particularly as the number of goods
increases. If bids contain a large number of goods on
average, improvement #1 will have a substantial effect
because more bins will be skipped between every pair of
bins that are considered, eliminating the need to indi-
vidually examine all the bids in those bins. However, our
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caching scheme favors distributions with small bids be-
cause they increase the likelihood that partial allocations
will be cacheable. The pruning technique described in 4.4
reduces the number of nodes that are cached, lowering
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memory consumption and making CASS feasible for lar-
ger problems. Our second pruning technique often im-
proves performance by two orders of magnitude, though it
is most effective when the variance of average price per
bid is relatively small. This technique also reduces the
optimal cache size, further reducing memory consumption.
As a result of pruning, with pruning the amount of memory
available for caching does not seem to be a limiting factor
in CASS’s performance.

VSA is interesting for two reasons. Firstly, it appears to
offer good anytime performance in cases with small bids
and many goods. Secondly, it provides a case study in the
power of market-based optimization. Further work is
needed to reach firm conclusions, but it appears that as a
centralized optimization method VSA is overshadowed by
other techniques. However, other attractions of mar-
ket-based optimization—in particular its inherent distrib-
uted nature and robustness to change in problem specifi-
cation—may make VSA attractive for some domains.

7 Related and Ongoing Work
As far as we are aware, the work most directly relevant to
the ideas presented here is a paper by Sandholm [1999]
that appears in these proceedings. Sandholm’s Bidtree
algorithm appears to be closely related to CASS, but im-
portant differences hold. In particular, Bidtree performs a
secondary depth-first search to identify non-conflicting
bids, whereas CASS’s structured approach allows it to
avoid considering most conflicting bids. Bidtree also
performs no pruning analogous to our Improvement #3
and no caching. On the other hand, Bidtree uses an IDA*
search strategy rather than CASS’s branch-and-bound
approach, and does more preprocessing. We intend to
continue studying the differences between these algo-
rithms, including differences in experimental settings.

Our problem can of course be abstracted away from the
auction motivation and viewed as a straightforward com-
binatorial optimization. This suggests a wealth of litera-
ture that could be applied. We are currently implementing
some of these techniques and comparing them to our
present results. We are especially interested in compari-
sons with mixed-integer programming and greedy meth-
ods. In particular, we have been investigating a new al-
gorithm5 that orders bids in descending order according to
average price per good, and does a depth-first search with
extensive pruning. This algorithm appears to offer per-
formance similar to CASS, and we intend to report on it in
a follow-up paper.

8 Conclusion
We have proposed two novel algorithms to mitigate the
computational complexity of combinatorial auctions.

CASS determines optimal allocations very quickly, and
also provides good anytime performance. In the future we

5 This ongoing work is joined by Liadan O’Callaghan and
Daniel Lehmann.

intend to pursue a formal analysis of CASS’s computa-
tional complexity, and to test both CASS and VSA with
data collected from real bidders.

VSA can determine near-optimal allocations even in
cases with hundreds of goods and tens of thousands of bids.
Since it has been infeasible to run CASS on much larger
problems we do not yet know how close VSA comes to
optimality in these cases. An investigation of VSA’s limits
remains an area for future work.
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An Algorithm for Multi-Unit Combinatorial Auctions

Kevin Leyton-Brown and Yoav Shoham and MosheTennenholtz
ComputerScienceDepartment

StanfordUniversity, Stanford,CA 94305

Abstract

Wepresentanovel algorithmfor computingtheoptimalwin-
ning bidsin a combinatorialauction(CA), that is, anauction
in which biddersbid for bundlesof goods. All previously
publishedalgorithmsarelimited to single-unitCAs, already
a hardcomputationalproblem. In contrast,herewe address
themoregeneralproblemin whicheachgoodmayhavemul-
tiple units, andeachbid specifiesan unrestrictednumberof
units desiredfrom eachgood. We prove the correctnessof
our branch-and-boundalgorithm,which incorporatesa spe-
cializeddynamicprogrammingprocedure.We thenprovide
very encouraginginitial experimentalresultsfrom an imple-
mentedversionof thealgorithm.1

Intr oduction
Auctions are the most widely studiedmechanismin the
mechanismdesignliterature in economicsand game the-
ory (Fudenberg & Tirole 1991). This is due to the fact
that auctionsare basic protocols,serving as the building
blocks of more elaboratedmechanisms. Given the wide
popularity of auctionson the Internetand the emergence
of electroniccommerce,whereauctionsserve as the most
populargame-theoreticmechanism,efficient auctiondesign
has becomea subjectof considerableimportancefor re-
searchersin multi-agentsystems(e.g.(Wellmanetal. 1998;
Monderer& Tennenholtz2000)). Of particularinterestare
multi-objectauctionswherethebidsnamebundlesof goods,
calledcombinatorialauctions(CA). For example,imagine
anauctionof usedelectronicequipment.A biddermaywish
to bid � for a particularTV and � for a particularVCR, but���� ��� � for thepair. In this exampleall thegoodsat auc-
tion aredifferent,so we call the auctiona single-unitCA.
In contrast,consideranelectronicsmanufacturerauctioning
100 identicalTVs and100 identicalVCRs. A retailerwho
wantsto buy 70 TVs and30 VCRswould beindifferentbe-
tweenall bundleshaving 70TVs and30VCRs.Ratherthan
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having to bid on eachof the 	�
�
 
 � 	�
�
� 
 distinct bundles,
shewould preferto placethesinglebid (price, � 70 TVs, 30
VCRs� ). We call anauctionthatallows sucha bid a multi-
unit CA.

In a combinatorialauction,a selleris facedwith a setof
price offers for variousbundlesof goods,andhis aim is to
allocatethegoodsin awaythatmaximizeshisrevenue.This
optimizationproblemis intractablein thegeneralcase,even
when eachgood hasonly a single unit (Rothkopf, Pekec,
& Harstad1998). Given this computationalobstacle,two
parallel lines of researchhave evolved. The first exposes
tractablesub-casesof the combinatorialauctionsproblem.
Most of this work hasconcentratedon identifying bidding
restrictionsthatentailtractableoptimization;see(Rothkopf,
Pekec, & Harstad1998; Nisan 1999; Tennenholtz2000;
Vries & Vohra2000). Also, the caseof infinitely divisible
goodsmaybetractablysolvedby linearprogrammingtech-
niques. The other line of researchaddressesgeneralcom-
binatorial auctions. Although this is a classof intractable
problems,in practiceit is possibleto addressinterestingly-
large datasetswith heuristic methods. It is desirableto
do so becausemany economicsituationsarebestmodeled
by a generalCA, andbidders’strategic behavior is highly
sensitive both to changesin the auction mechanismand
to approximationof the optimal allocation (Nisan & Ro-
nen 2000). Previous researchon the optimizationof gen-
eral CA problemshasfocusedexclusively on the simpler
single-unitCA (Fujishima,Leyton-Brown,& Shoham1999;
Sandholm1999;Lehmann,O’Callaghan,& Shoham1999)).
The generalmulti-unit problem has not previously been
studied,nor have any heuristicsfor its solutionbeenintro-
duced.

In this paperwe presenta novel algorithm, termedCA-
MUS (CombinatorialAuction Multi-Unit Search),to com-
putethewinnersin a general,multi-unit combinatorialauc-
tion. A generalizationand extensionof our CASS algo-
rithm for winner determinationin single-unit CA’s (Fu-
jishima, Leyton-Brown, & Shoham1999),CAMUS intro-
ducesanovel branch-and-boundtechniquethatmakesuseof
several additionalprocedures.A crucial componentof any

APPENDIX  B
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suchtechniqueis a function for computingupperbounds
on the� optimal outcome.We presentsuchan upperbound
function,tailoredspecificallyto themulti-unit combinatorial
auctionsproblem. We prove that this functiongivesanup-
perboundontheoptimalrevenue,whichenablesusto show
thatCAMUS is guaranteedto find optimalallocations.We
also introducedynamic programmingtechniquesto more
efficiently handlemulti-unit single-goodbids. In addition,
we presenttechniquesfor pre-processingandcaching,and
heuristicsfor determiningsearchorderings,furthercapital-
izing on the inherentstructureof multi-unit combinatorial
auctions.

In thenext sectionwe formally definethegeneralmulti-
unit combinatorialauctionproblem. In Section3 we de-
scribeCAMUS. In Section4 we deal in somemoredetail
with someof CAMUS’s techniques.Due to lack of space,
wecannotpresentall theCAMUSproceduresin detail;how-
ever, this sectionwill clarify its most fundamentalcompo-
nents. In Section5 we presentour experimentalsetupand
someexperimentalresults.

ProblemDefinition
We now definethe computationalproblemassociatedwith
multi-unit combinatorialauctions.

Let � � ��� 	�� ��� ��������� ����� be a set of goods. Let  "!$#&%
denotethe number of available units of good # . Con-
sider a set of bids ' � �)( 	���������� (+*,� . Bid (+- is a pair
!/.0!1( - % ��2 !1( - %3% where .0!1( - % is the price offer of bid ( - , and

2 !1(+-+% � ! 2 !1(+-+% 	4��2 !1(3-�%5� ����������2 !1(3-�%��6% where 2 !1(3-�%�7 is the
numberof requestedunitsof good # in (3- . If thereis no bid
requesting8 unitsof good 9 and0 unitsof all goods# �� 9
(for some:<;=9>;@? andsome:<;A8B;C "!$9�% ) then,w.l.o.g,
we augment' with a bid of price0 for thatbundle. An al-
location DCEF' is a subsetof thebidswhere GIHKJ)L 2 !M(�%N7O; "!/#P% ( :Q;R#S;R? ). A partial allocation DUTKV�W+X - V�Y is an al-
locationwhere,for some# , GIHKJZL�[�\1]M^$_`\+a 2 !1(�%N7<bc "!$#&% . A full
allocationisanallocationthatisnotpartial.Let d denotethe
setof all allocations.The multi-unit combinatorialauction
problemis thecomputationof anoptimalallocation,thatis,e�f �g? e�� LhJ�i>GIHKJ)L".0!1(�% . In short,wearesearchingfor asub-
setof thebidsthatwill maximizetheseller’s revenuewhile
allocatingeachavailableunit atmostonce.

Notethatthedefinitionof theoptimalallocationassumes
that bids areadditive–thatan auctionparticipantwho sub-
mits multiple bids may be allocatedany numberof these
bids for a price that equalsthe sumof eachallocatedbid’s
priceoffer. In somecases,however, a participantmaywish
to submittwo or morebidsbut requirethatat mostonewill
beallocated.We permitsuchadditionalconstraintsthrough
theuseof dummygoods, introducedalreadyin (Fujishima,
Leyton-Brown,& Shoham1999).Dummygoodsarenormal
single-unitgoodswhichdonotcorrespondto actualgoodsin
theauction,but serve to enforcemutualexclusionbetween
bids. For example, if bids ( 	 and (1� referring to bundles

2 !1( 	 % and 2 !1(1��% are intendedto be mutually exclusive, we
adda dummygood j to eachbid: 2 !1( 	 % becomes2 !1( 	 %Uklj ,
and 2 !1(1��% becomes2 !1(1��%Ikmj . Sincethe good j canbe al-
locatedonly once,at mostoneof thesebids will be in any
allocation.(Moregenerally, it is possibleto introducen -unit
dummygoodsto enforcetheconditionthatno morethan n
of a setof bidsmaybeallocated.)While dummygoodsin-
creasethe expressive power of the bidding language,their
usehasno impacton theoptimizationalgorithm.Hence,in
theremainderof this paperwe do not discriminatebetween
dummygoodsandreal goods,andwe assumethat all bids
areadditive.

In thesequel,we will alsomake useof thefollowing no-
tation. Given an allocationD anda good 9 , we will denote
thetotalnumberof unitsallocatedin D , andthetotalnumber
of unitsof good9 allocatedin D , by o&n09qp�r�!/Ds% ando&n09qp�r�-+!/Ds%
respectively. In addition o&n,9tp�r)!/p�u�p ewv % will denotethe total
numberof unitsover all goods.

Algorithm Definition
Branch-and-BoundSearch

Given a setof bids, CAMUS systematicallycomparesthe
revenuefrom all full allocationsin order to determinethe
optimal allocation. This comparisonis implementedas a
depth-firstsearch:webuild upapartialallocationonebid at
a time. Oncewehave constructeda full allocationweback-
track,removing themostrecentlyaddedbid from thepartial
allocationandaddinga new bid instead.Sometimeswe can
safelyprunethesearchtree,backtrackingbeforea full allo-
cationhasbeenconstructed.Everytimeabid is addedto the
currentallocation,CAMUS computesanestimateof therev-
enuethatwill begeneratedby theunallocatedgoodswhich
remain.Providedthatthisestimatefunction u"!+% alwayspro-
videsan upperboundon the actualrevenue,we canprune
whenever .U!$Dx% � ug!$Dx%�;y.0!/DUHtz3{ X % , where D is the current
allocation,.0!$Dx% � GIHKJ)L".0!1(�% andDUHtz3{ X is thebestallocation
observedsofar.

Bins

Binsarepartitionedsetsof bids. Considersomeorderingof
thegoods.Thereis onebin for eachgood,andeachbid be-
longsto thebin correspondingto its lowest-ordergood.Dur-
ing the searchwe start in the first bin andconsideradding
eachbid in turn. After addinga bid to our partial alloca-
tion we move to the bin correspondingto the lowest-order
goodwith any unallocatedunits. For example,if the first
bid we selectrequestsall unitsof goods1, 2 and4, we next
proceedto bin 3. Besidesmaking it easyto avoid consid-
erationof conflicting bids, bins arepowerful becausethey
allow thepruningfunction to considercontext without sig-
nificantcomputationalcost.If bidsin (t9tn|- arecurrentlybe-
ing consideredthenthepruningfunctionmustonly take into
accountbids from (t9qn}- ����� (t9tn|� . Becausethe partitioning
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of bids into binsdoesnot changeduringthesearchwe may
compute~ the pruninginformationfor eachbin in a prepro-
cessingstep.

Subbins
In the multi-unit setting,we will often needto selectmore
than one bid from a given bin. This leadsto the idea of
subbins. A subbinis asubsetof thebidsin abin thatis con-
structedduringthesearch.Sincesubbinsarecreateddynam-
ically they cannotprovideprecomputedcontextual informa-
tion; rather, they facilitatetheefficient selectionof multiple
bidsfrom agivenbin. Every timeweaddabid to ourpartial
allocationwe createa new subbincontainingthenext setof
bids to consider. If thesearchmovesto a new bin, thenew
subbinis generatedfrom the new bin by removing all bids
thatconflict with thecurrentpartialallocation.If thesearch
remainsin thesamebin, thenew subbinis createdfrom the
currentsubbinby removing conflicting bids asabove, and
additionally: if (t94j 	�� (t94j�� ��������� (t94j)- is theorderedsetof ele-
mentsin thecurrentsubbinand (t94j)7 is thebid thatwasjust
chosen,thenweremoveall (t94j)� � 8�;@# . In thiswaywecon-
siderall combinationsof non-conflictingbids in eachbin,
ratherthanall permutations.

DominatedBids
Some bids may be removed from considerationin a
polynomial-timepreprocessingstep. For eachpair of bids
( ( 	 , (M� ) wherebothnamethesamegoodsbut .U!M( 	 %s�S.0!1(M�w%
and 2 !1( 	 %N7�; 2 !1(1�w%�7 for every good # , we may remove (M�
from thelist of bidsto beconsideredduringthesearch,as (M�
is neverpreferableto ( 	 (hencewesaythat ( 	 dominates(1� ).
However, it is possiblethat an optimal allocationcontains
both ( 	 and (1� . For this reasonwe store (1� in a secondary
datastructureassociatedwith ( 	 , andconsideraddingit to
anallocationonly afteradding ( 	 .
Dynamic Programming
Singletonbids (that is, bids that nameunits from only one
good)deserve specialattention. Thesebids will generally
beamongthemostcomputationallyexpensive to consider–
thenumberof nodesto searchafteraddinga very shortbid
is nearly the sameas the numberof nodesto searchafter
skipping the bid, becausea short bid allocatesfew units
andhenceconflictswith few otherbids. Unfortunately, we
expect that singletonbids will be quite commonin a vari-
ety of real-world multi-unit CA’s. CAMUS simplifies the
problemof singletonbids by applying a polynomial-time
dynamicprogrammingtechniqueas a preprocessingstep.
We constructa vector r+9qn0� v 2 p�uKn|� for eachgood � , where
eachelementof the vector is a setof singletonbids nam-
ing only good � . r+9qn0� v 2 p�u�n}��!/#&% evaluatesto the revenue-
maximizingsetof singletonbidstotaling # unitsof good � .
This freesus from having to considersingletonbids indi-
vidually; instead,we consideronly elementsof the single-

ton vector and treat theseelementsas atomic bids during
the search. Also, thereis never a needto add more than
oneelementfrom eachsingletonvector. To seewhy, imag-
ine that we addboth r+9qn0� v 2 p�u�n}��!/#&% and r+9qn0� v 2 p�u�n}��!18&% to
our partial allocation. Thesetwo elementsmay have bids
in common,and additionally theremay be singletonbids
with morethan ? e�� !/# � 8&% elementsthatwould not conflict
with our partialallocationbut thatwe have not considered.
Clearly, we would be betteroff addingthe singleelement
r+9qn0� v 2 p�u�n}��!/# � 8&% .
Caching

Considera partial allocation D 	 that is reachedduring the
searchphase.If thesearchproceedsbeyond D 	 then u"!/D 	 %
wasnot sufficiently small to allow usto backtrack.Later in
thesearchwemayreachanallocationD,� which,by combin-
ing differentbids,coversexactly thesamenumberof units
of thesamegoodsasD 	 . CAMUS incorporatesamechanism
for cachingthe resultsof the searchbeyond D 	 to generate
a betterestimatefor the revenuegiven D,� thanis given by
u"!/D,�w% . (SinceD 	 and D,� do not differ in theunitsof goods
thatremain,u"!/D 	 % � u"!/D,�w% .) Considerall theallocationsex-
tendingD 	 uponconsiderationof which thealgorithmback-
tracked, denotedr 	�� rK� ��������� r�� . When we backtracked at
eachr - we did sobecause.0!1r - % � ug!Mr - %>;�.0!/D Htz3{ XK% , asex-
plainedabove. It follows that ? e�� -+!/.0!1r4-�% � ug!Mr�-+%+% is an
overestimateof therevenueattainablebeyond D 	 , andthatit
is asmalleroverestimatethan u"!/D 	 % (if it werenot,wewould
have backtracked at D 	 instead).Sincein general.0!/D 	 % ��.0!/D,��% , wecachethevalue? e�� -+!/.0!Mr�-+% � u"!1r4-�%3%��B.0!/D 	 % and
backtrackwhen .0!/D,��% ����e���� 2 !/D,��%>;S.U!$DUHtz3{ X % . Our cache
is implementedasa hashtable,sincecachingis only bene-
ficial to theoverall searchif lookuptime is inconsequential.
A consequenceof this choiceof datastructureis thatcache
datamaysometimesbeoverwritten;weoverwriteanold en-
try in the cachewhen the searchassociatedwith the new
entry examinedmore nodes. Even when we do overwrite
useful data the error is not catastrophic,however: in the
worst casewe mustsimply searcha subtreethat we might
otherwisehavepruned.

Heuristics

Two orderingheuristicsareusedto improve CAMUS’s per-
formance. First, we must determinean ordering of the
goods;thatis,whichgoodcorrespondsto thefirst bin,which
correspondsto thesecond,etc.For eachgood9 wecompute
r � u f 2 - �

*"�Z�sHt-/�K{4_N� ����-��V�� �K�Z*�- X {K_ , wheren,o&?@(t94j�r4- is the numberof
bidsthat requestgood 9 and e�� ��o&n,9tp�r4- is theaveragenum-
ber of total units (i.e., not just units of good 9 ) requested
by thesebids. We designatethe lowest-ordergood as the
goodwith thelowestscore,thenwerecalculatethescorefor
the remaininggoodsandrepeat. The intuition behindthis
heuristicis asfollows:
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� We want to minimize the numberof bids in low-order
bins,� to minimizeearlybranchingandthusto make each
individualprunemoreeffective.

� Wewantto minimizethenumberof unitsof goodscorre-
spondingto low-orderbins,sothatwe will morequickly
move beyond the first few bins. As a result,the pruning
functionwill beableto take into accountmorecontextual
information.

� We wantto maximizethetotal numberof unitsrequested
by bids in low-order bins. Taking thesebids moves us
morequickly towardsthe leavesof thesearchtree,again
providing the pruningfunction with morecontextual in-
formation.

Our secondheuristicdeterminestheorderingof bidswithin
bins. Given current partial allocation D , we sort bids
in a given bin in descendingorder of r � u f 2 !M(+7)% , where

r � u f 2 !1(+7)% �
T ��H1�N��Z*�- X {���H1�q� � u"!/D�k�(37)% . Theintuition behindthis

heuristicis that theaveragepriceperunit of (t94j)7 is a mea-
sureof how promisingthebid is, while thepruningoveresti-
matefor u"!/D6k�(q9�jZ7)% is anestimateof how promisingtheun-
allocatedunitsare,giventhepartialallocation.This heuris-
tic helpsCAMUS to find goodallocationsquickly, improv-
ing anytime performanceandalsoincreasingD0Htz3{ X , making
pruningmoreeffective. Becausethe pruningoverestimate
dependson D , thisorderingis performeddynamicallyrather
thanasapre-processingstep.

CAMUS Outline
Basedon theabove, it is now possibleto give anoutlineof
theCAMUS algorithm:

� Process dominated bids.
� Determine an ordering on the goods,
according to the good-ordering heuristic.

� Using the dynamic programming technique,
determine the optimal combination of
singleton bids totaling ���K�K�N���$�"  for each
good � .

� Partition all non-singleton bids into
bins, according to the good ordering.

� Precompute pruning information for each
bin.

� Set ¡}¢=� and £�¢¥¤�¦ .
� Recursive entry point:

– For � = 1 ...number of bids in the
current subbin of §+¡�¨U© .ª £�¢�£�«¬§�¡��® .ª If (̄��$£| &°B±�²)±)³�´"�/£| |µ�¯w�/£U¶�·M¸N¹q  ) backtrack.ª If (̄��$£| &°Bºg�/£| |µ�¯w�/£U¶�·M¸N¹q  ) backtrack.ª If (»w¨P¡�¼4½4�$£| ¾¢¿»w¨P¡�¼4½K�/¼qº�¼N²�ÀM  ) record £ if it
is the best; backtrack.

ª Set ¡ to the index of the lowest-order
good in £ where »w¨P¡�¼K½K©N�/£| }ÁÂ���$¡+  . (¡ may or
may not change)ª Construct a new subbin based on the
previous subbin of §�¡�¨�© (which is §�¡�¨�©
itself if ¡ changed above):Ã Include all §�¡�PÄ from current subbin,
where ÅÇÆ�� .Ã Include all dominated bids associated
with §+¡��® .Ã Include ½t¡�¨hÈZÀ5´4¼qº�¨�©��/���$¡+ &É�»w¨P¡�¼K½K©��/£| M  .Ã Sort the subbin according to the
subbin-ordering heuristic.Ã Recurse to the recursive entry point,
above, and search this new subbin.ª £�¢�£�ÉB§+¡�g® .

– End For
� Return the optimal allocation: £ ¶N·t¸N¹ .

CAMUS procedures: a closerlook
In this sectionwe examinetwo of CAMUS’s fundamentalproce-
duresmore formally. Additional detailswill be presentedin our
full paper.

Pruning
In this subsectionwe explain the implementationof CAMUS’s
pruningfunction anddemonstratethat it is guaranteednot to un-
derestimatetherevenueattainablegivena partialallocation.Con-
sidera point in thesearchwherewe have constructedsomepartial
allocation £ . The taskof our pruning function is to give an up-
perboundon theoptimal revenueattainablefrom theunallocated
items,usingtheremainingbids(i.e., thebidsthatmaybeencoun-
teredduring the remainderof the search). Hence,in the sequel
whenwereferto goods,thenumberof unitsof agoodandbids,we
referto whatremainsatourpoint in thesearch.

First, we provide an intuitive overview. For every (remaining)
good � we will calculatea value Ê��/�"  . Simplifying slightly, this
valueis thelargestaveragepriceperunit of all the(remaining)bids
requestingunitsof good� thatdonotconflictwith £ , multipliedby
thenumberof (remaining)unitsof � . Thesumof Ê��/�"  valuesfor all
goodsis anupperboundon optimalrevenuebecauseit relaxesthe
constraintthatthebidsin theoptimalallocationmaynot conflict.

More formally, let Ë@¢�¤3È�Ì+ÍNÈ�Î4ÍK�K�K�KÍNÈ�ÏÐ¦ beasetof goods.Let
��Ñ��/�"  denotethe numberof availableunits of good � . Considera
set of bids ÒÓ¢Ô¤3§"Ì+ÍK�K�K�KÍN§�Õw¦ . Bid §�© is associatedwith a pair
�/¯w�/§�©N 1ÍN´"�/§�©N t  wherē��$§�©N  is thepriceoffer of bid §�© , and ´"�/§�©N Ö¢
�/´"�$§�©N 3Ì�ÍN´"�/§�©N 1ÎKÍK�K�K�KÍN´"�$§�©N qÏ>  wheré"�/§�©N N® is therequestednumber
of unitsof good� in §�© . For eachbid §�© , let ²P�/§�©N U¢ ×�Ø ¶ _�ÙÚPÛ`Ü � Ü&Ý · Ø ¶ _NÙ��
betheaveragepriceperunit of bid §�© . Noticethattheaverageprice
perunit maychangedramaticallyfrom bid to bid, andit is a non-
trivial notion; our techniquewill work for any arbitrary average
priceperunit. Let Þs�/�"  beasortedlist of thebidsthatreferto non-
zerounitsof good� ; thelist is sortedin amonotonicallydecreasing
manneraccordingto the ²h© ’s. Let ß Þà�/�" 1ß denotethe numberof
elementsin Þs�/�"  , andlet Þs�/�"  Ä denotethe Å -th elementof Þs�/�"  .
Êh�$�"  is determinedby thefollowing algorithm:
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Let Êh�/�"  :=0;
Let ál�/�"  :=0;
For ¡}â�¢¥� to ß Þs�$�" 1ß do
if ál�/�" �Á���Ñ��/�"  then
¤ let Óâ�¢ãá�¡�¨|�/´"�/Þà�/�" t©� N®�ÍN���$�" <Éäál�/�" t Måqál�/�" c¢ãál�/�" æ°
håqÊh�/�� �¢�Êh�/�" P°B²P�/Þà�/�" t©N  Ã P¦
Theorem1 Let Ò6çÇ¢è¤3§�é Ì ÍN§�éÎ ÍK�K�K�KÍN§�é¸ ¦ be thebids in an optimal
allocation.Then,ê�çë¢=ì ¶tí)î,ï ¯w�/§Z �µ=ì Ì1ðg®�ð�Ï Êh�/�"  .
Sketch of proof: Consider the bid §)çòñ Ò6ç . Then,
¯w�/§)ç� O¢¾ì Ì1ðg®KðwÏ ²P�/§ZçK  Ã ´��/§)ç� N® . Hence, ê�çl¢¾ìë¶tí)î,ïM¯w�/§� O¢
ìó¶qí)î,ï�ì ÌMð�®�ð�Ï ²P�/§�  Ã ´"�/§� N® . By changingtheorderof summation
we get that ê�ç¬¢Aì ÌMð�®�ð�Ï ì ¶tí)î,ï ²P�/§�  Ã ´"�$§Z N® . Notice that,given
a particular � , the contribution of bid § to ìë¶tí)î ï ²P�/§�  Ã ´"�/§� N® is
²P�/§�  Ã ´"�/§� N® . Recallnow that Êh�/��  hasbeenconstructedfrom the
setof all bids that refer to good � by choosingthemaximalavail-
ableunits of good � from the bids in Þs�$�"  , wherethesebids are
sortedaccordingto theaveragepriceperunit of good. Hence,we
get Êh�/�" �ô=ìë¶tí)î ï ²P�/§�  Ã ´"�$§Z N® . Giventhattheaboveholdsfor every
good� , this impliesthat ì ÌMð�®�ð�Ï Êh�/�" �ô@ìó¶tíZî0ïM¯w�/§�  , asrequested.

Theabove theoremis thecentraltool for proving thefollowing
theorem:

Theorem2 CAMUSis complete:it is guaranteedto find theopti-
malallocationin a multi-unit combinatorialauctionproblem.

Pre-Processingof Singletons
In this subsectionwe explain the constructionof the ½t¡�¨PÈZÀ/´�¼Nº�¨�õ
vectordescribedabove,anddemonstratethat ½t¡�¨PÈZÀ/´�¼Nº�¨�õ��/�"  is the
revenue-maximizingsetof singletonbidsfor good È thatrequesta
total notexceeding� units.

Let §�Ì�ÍN§ZÎ4ÍK���K�KÍN§Zö be bids for a singlegood È , wherethe total
numberof availableunits of good È is � . Let ¯w�/§�©�  and ´"�/§�©N  be
thepriceoffer andthequantityrequestedby §�© , respectively. Our
aim is to computetheoptimalselectionof §�© ’s in orderto allocate
Å units of good È , for �lµ÷ÅmµA� . Considera two dimensional
grid of size ø��|�K�K�NÀ$ùûú�ø��|�K�K�N��ù wherethe �$¡�ÍN�"  -th entry, denotedbyü �/¡�ÍN�"  , is the optimal allocationof � units consideringonly bids
§"Ì+ÍN§ZÎ4ÍK�K�K�KÍN§�© . Thevalueof

ü �/¡+ÍN�"  , denotedby ý¬�$¡�ÍN�"  , is thesum
of the price offers of the bids in

ü �/¡�Í��"  . ü �t�)Í��"  will be §"Ì if §"Ì
requestsnomorethan� units,andotherwisewill betheemptyset.
Now wecandefine

ü �/¡�ÍN��  recursively:

1. ´��/§�©� |Æ�� : ü �/¡+ÍN�" �¢ ü �/¡0ÉÂ�ZÍN�"  ;
2. ´��/§�©� �¢þ� : if ¯w�/§�©N 6ÆÿýÐ�/¡óÉ��ZÍN�"  then

ü �$¡�ÍN�" �¢c§�© . Elseü �/¡+ÍN�" �¢ ü �/¡0ÉÂ�ZÍN�"  .
3. ´��/§�©� sÁ@� : if ýÐ�/¡|É �ZÍN�� sô@¯w�/§�©� ,°@ýÐ�/¡|É �ZÍN�¬É ´"�/§�©N M  thenü �/¡+ÍN�" �¢ ü �/¡PÉ �)ÍN��  . Else

ü �/¡+ÍN�" �¢�§�©"« ü �/¡PÉ �ZÍN�ëÉ ´"�/§�©N M  .
This dynamicprogrammingprocedureis polynomial, and yields
the desiredresult; the optimal allocationof Å units is given byü �/À1ÍKÅ"  . Set ½t¡�¨PÈZÀ/´�¼Nº�¨Uõ��1Å�  =

ü �/À1ÍKÅ�  , �Ðµ=ÅÇµ�� .
Experimental results

Unfortunately, no real-world dataexists to describehow bidders
will behave in generalmulti-unit combinatorialauctions,precisely
becausethe determinationof winnersin suchauctionswasprevi-
ouslyunfeasible.WehavethereforetestedCAMUS onsetsof bids
drawn from a randomdistribution. We createdbids as follows,

varyingtheparameters̈P»wá õ çMç � ¸ and̈P»wá ¶ © � ¸ , andfixing thepa-
rameters»w¨h¡�¼K½KÏ����Ð¢ �

, ²)Ê)ÈZ¯���¡�±�´ ¶ � ¸t· ¢ �
	
, ²)Ê)È)¯���¡�±�´���
�à¢�� � ,

¯���º�§"Ì}¢ 	 ��� , ¯���º�§)ÎI¢ 	 ��� � , ¯���¡�±�´���
�à¢ 	 � � :

1. Setthenumberof unitsthatexist for eachgood:

(a) For eachgood ¡ , randomlychoose»w¨h¡�¼K½K© from the range
ø����K�K�N»w¨P¡�¼4½�Ï����+ù .

(b) If ìI©�»w¨h¡�¼K½K©��¢ Õ���Ï�� ïtï�� � Ú"!�# _�^ � Ý \
$�&% Û ®
��Õ�© ¹�¸ Ý \
$ (the expectationon

ìI©�»w¨P¡�¼K½K© ) thengoto (a). Thisensuresthateachtrial involves
thesametotal numberof units.

2. Set an average price for each good: ²�ÊZÈ)¯���¡�±�´�© is drawn
uniformly randomly from the range ø ²)Ê)È)¯���¡�±�´g¶ � ¸t·þÉ
²)Ê)È)¯���¡�±�´ ���
� �K�K�N²�Ê)ÈZ¯���¡�±�´ ¶ � ¸t· °B²�Ê)ÈZ¯���¡�±�´ ����� ù .

3. Selectthe numberof goodsin the bid. This numberis drawn
from adecaydistribution:

(a) Randomlychoosea goodthathasnot alreadybeenaddedto
this bid

(b) With probability ¯���º�§"Ì , if moregoodsremainthengo to (a)

4. Selectthe numberof units of eachgood,accordingto another
decaydistribution:

(a) Add aunit

(b) With probability ¯���º�§)Î , if moreunitsremainthengo to (a)

5. Set a price for this bid: ¯���¡�±�´è¢'��²)¨Ph�M� É@¯���¡�±�´������Í�� °
¯���¡�±�´���
��  Ã ì © í)¶ © � �/²�ÊZÈ)¯���¡�±�´�© Ã »w¨P¡�¼K½K©N 
This distribution hasthe following characteristicsthat we con-

siderto bereasonable.Bids will tendto requesta smallnumberof
goods,independentof thetotal numberof goods.Suchdatacases
arecomputationallyharderthandrawing a numberof goodsuni-
formly from a range,or thanscalingtheaveragenumberof goods
perbid to themaximumnumberof goods.Likewise,bidswill tend
to namea smallnumberof unitspergood. Pricestendto increase
linearly in the numberof units, for a fixed setof goods. This is
a hardercasefor our pruningtechnique,muchharderthandraw-
ing pricesuniformly from arange.In fact,it maybereasonablefor
pricesto besuperlinearin thenumberof units,asthemotivationfor
holdinga CA in thefirst placemaybethatbiddersareexpectedto
valuebundlesmorethanindividualgoods.However, thiswouldbe
aneasiercasefor ourpruningalgorithm,sowe testedon thelinear
caseinstead.Theconstructionof realistic,harddatadistributions
remainsa topic for furtherresearch.

Our experimentaldatawascollectedon a PentiumIII-733 run-
ning Windows 2000,with 25 MB allocatedfor CAMUS’s cache.
Our figureNumberof BidsvsTimeshows CAMUS’s performance
on the distribution describedabove, with eachline representing
runswith adifferentnumberof goods.Notethat,for example,CA-
MUS solvedproblemswith 35objects(14goods)and2500bidsin
abouttwo minutes,andproblemswith 25 objects(10 goods)and
1500bids in abouta second.Becausethe lines in this graphare
sub-linearonthelogarithmicscale,CAMUS’sperformanceis sub-
exponentialin the numberof bids, thoughit remainsexponential
in the numberof goods. Our figure Percentage Optimality shows
CAMUS’sanytimeperformance.Eachline onthegraphshowsthe
timetakento find solutionswith revenuethatis somepercentageof
theoptimal,calculatedafterthealgorithmterminated.Notethatthe
timetakento find theoptimalsolutionis lessthanthetimetakenfor
thealgorithmto finish,proving thatthis solutionis optimal.These
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anytime resultsare very encouraging–notethat CAMUS finds a
99%optimal solutionanorderof magnitudemorequickly thanit
takes for the algorithm to run to completion. This suggeststhat
CAMUS could be usefulon much larger problemsthanwe have
shown hereif anoptimalsolutionwerenot required.

Conclusions
In this paperwe introducedCAMUS, a novel algorithmfor deter-
miningtheoptimalsetof winningbidsin generalmulti-unit combi-
natorialauctions.Thealgorithmhasbeentestedonavarietyof data
distributionsandhasbeenfoundto solveproblemsof considerable
scalein anefficientmanner. CAMUS extendsourCASSalgorithm
for single-unitcombinatorialauctions,andenablesa wide exten-
sion of the classof combinatorialauctionsthat canbe efficiently
implemented.In our currentresearchwe arestudyingtheaddition
of randomnoiseinto our goodandbin orderingheuristics,com-
binedwith periodicrestartsandthedeletionof previously-searched
bids, to improve performanceon hard caseswhile still retaining
completeness.
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ABSTRACT
General combinatorial auctions—auctions in which bidders
place unrestricted bids for bundles of goods—are the sub-
ject of increasing study. Much of this work has focused on
algorithms for finding an optimal or approximately optimal
set of winning bids. Comparatively little attention has been
paid to methodical evaluation and comparison of these al-
gorithms. In particular, there has not been a systematic
discussion of appropriate data sets that can serve as uni-
versally accepted and well motivated benchmarks. In this
paper we present a suite of distribution families for generat-
ing realistic, economically motivated combinatorial bids in
five broad real-world domains. We hope that this work will
yield many comments, criticisms and extensions, bringing
the community closer to a universal combinatorial auction
test suite.1

1. INTRODUCTION

1.1 Combinatorial Auctions
Auctions are a popular way to allocate goods when the

amount that bidders are willing to pay is either unknown or
unpredictably changeable over time. The rise of electronic
commerce has facilitated the use of increasingly complex
auction mechanisms, making it possible for auctions to be
applied to domains for which the more familiar mechanisms
are inadequate. One such example is provided by combina-
torial auctions (CA’s), multi-object auctions in which bids
name bundles of goods. These auctions are attractive be-
cause they allow bidders to express complementarity and
substitutability relationships in their valuations for sets of
goods. Because CA’s allow bids for arbitrary bundles of
goods, an agent may offer a different price for some bundle
of goods than he offers for the sum of his bids for its disjoint

1This work was partly supported by DARPA grant number
F30602-98-C-0214-P00005.
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subsets; in the extreme case he may bid for a bundle with
the guarantee that he will not receive any of its subsets. An
example of complementarity is an auction of used electronic
equipment, in which a bidder values a particular TV at x
and a particular VCR at y but values the pair at z > x + y.
An agent with substitutable valuations for two copies of the
same book might value either single copy at x, but value
the bundle at z < 2x. In the special case where z = x (the
agent values a second book at 0, having already bought a
first) the agent may submit the set of bids {bid1 XOR bid2}.
By default, we assume that any satisfiable sets of bids that
are not explicitly XOR’ed is a candidate for allocation. We
call an auction in which all goods are distinguishable from
each other a single-unit CA. In contrast, in a multi-unit CA
some of the goods are indistinguishable (e.g., many iden-
tical TVs and VCRs) and bidders request some number of
goods from each indistinguishable set. This paper is primar-
ily concerned with single-unit CA’s, since most research to
date has been focused on this problem. However, when ap-
propriate we will discuss ways that our distributions could
be generalized to apply to multi-unit CA’s.

1.2 The Computational Combinatorial Auc-
tion Problem

In a combinatorial auction, a seller is faced with a set
of price offers for various bundles of goods, and his aim is
to allocate the goods in a way that maximizes his revenue.
(For an overview of this problem, see [8].) This optimization
problem is intractable in the general case, even when each
good has only a single unit. Because of the intractability of
general CA’s, much research has focused on subcases of the
CA problem that are tractable; see [22] and more recently
[25]. However, these subcases are very restrictive and there-
fore are not applicable to many CA domains. Other research
attempts to define mechanisms within which general CA’s
will be tractable (achieved by various trade-offs including
bid withdrawal penalties, activity rules and possible ineffi-
ciency). Milgrom [15] defines the Simultaneous Ascending
Auction mechanism which has been very influential, partic-
ularly in the recent FCC spectrum auctions. However, this
approach has drawbacks, discussed for example in [6]. In
the general case there is no substitute for a completely un-
restricted CA. Consequently, many researchers have recently
begun to propose algorithms for determining the winners of
a general CA, with encouraging results. This wave of re-
search has given rise to a new problem, however. In order
to test (and thus to improve) such algorithms, it has been
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necessary to use some sort of test suite. Since general CA’s
have never been widely held, there is no data recording the
bidding behavior of real bidders upon which such a test suite
may be built. In the absence of such natural data, we are
left only with the option of generating artificial data that
is representative of the sort of scenarios one is likely to en-
counter. The goal of this paper is to facilitate the creation
of such a test suite.

2. PAST WORK ON TESTING CA
ALGORITHMS

2.1 Experiments with Human Subjects
One approach to experimental work on combinatorial auc-

tions uses human subjects. These experiments assign valu-
ation functions to subjects, then have them participate in
auctions using various mechanisms [3, 12, 7]. Such tests can
be useful for understanding how real people bid under differ-
ent auction mechanisms; however, they are less suitable for
evaluating the mechanisms’ computational characteristics.
In particular, this sort of test is only as good as the sub-
jects’ valuation functions, which in the above papers were
hand-crafted. As a result, this technique does not easily
permit arbitrary scaling of the problem size, a feature that
is important for characterizing an algorithm’s performance.
In addition, this method relies on relatively naive subjects
to behave rationally given their valuation functions, which
may be unreasonable when subjects are faced with complex
and unfamiliar mechanisms.

2.2 Particular Problems
A parallel line of research has examined particular prob-

lems to which CA’s seem well suited. For example, re-
searchers have considered auctions for the right to use rail-
road tracks [5], real estate [19], pollution rights [13], airport
time slot allocation [21] and distributed scheduling of ma-
chine time [26]. Most of these papers do not suggest holding
an unrestricted general CA, presumably because of the com-
putational obstacles. Instead, they tend to discuss alterna-
tive mechanisms that are tailored to the particular problem.
None of them proposes a method of generating test data,
nor does any of them describe how the problem’s difficulty
scales with the number of bids and goods. However, they
still remain useful to researchers interested in general CA’s
because they give specific descriptions of problem domains
to which CA’s may be applied.

2.3 Artificial Distributions
Recently, a number of researchers have proposed algo-

rithms for determining the winners of general CA’s. In
the absence of test suites, some suggested novel bid gen-
eration techniques, parameterized by number of bids and
goods [24, 10, 4, 8]. (Other researchers have used one or
more of these distributions, e.g., [17], while still others have
refrained from testing their algorithms altogether, e.g., [16,
14].) Parameterization represents a step forward, making it
possible to describe performance with respect to the prob-
lem size. However, there are several ways in which each of
these bid generation techniques falls short of realism, con-
cerning the selection of which goods and how many goods to
request in a bundle, what price to offer for the bundle, and
which bids to combine in an XOR’ed set. More fundamen-
tally, however, all of these approaches suffer from failing to

model bidders explicitly, and from attempting to represent
an economic situation with an non-economic model.

2.3.1 Which goods
First, each of the distributions for generating test data

discussed above has the property that all bundles of the
same size are equally likely to be requested. This assumption
is clearly violated in almost any real-world auction: most of
the time, certain goods will be more likely to appear together
than others. (Continuing our electronics example, TVs and
VCRs will be requested together more often than TVs and
printers.)

2.3.2 Number of goods
Likewise, each of the distributions for generating test data

determines the number of goods in a bundle completely in-
dependently from determining which goods appear in the
bundle. While this assumption appears more reasonable it
will still be violated in many domains, where the expected
length of a bundle will be related to which goods it contains.
(For example, people buying computers will tend to make
long combinatorial bids, requesting monitors, printers, etc.,
while people buying refrigerators will tend to make short
bids.)

2.3.3 Price
Next, there are problems with the pricing2 schemes used

by all four techniques. Pricing is especially crucial: if prices
are not chosen carefully then an otherwise hard distribution
can become computationally easy.

In Sandholm [24] prices are drawn randomly from either
[0, 1] or from [0, g], where g is the number of goods requested.
The first method is clearly unreasonable (and computation-
ally trivial) since price is unrelated to the number of goods
in a bid—note that a bid for many goods and for a small
subset of the same bid will have exactly the same price on
expectation. The second is better, but has the disadvan-
tage that average and range are parameterized by the same
variable.

In Boutilier et al.[4] prices of bids are distributed normally
with mean 16 and standard deviation 3, giving rise to the
same problem as the [0, 1] case above.

In Fujishima et al.[10] prices are drawn from [g(1−d), g(1+
d)], d = 0.5. While this scheme avoids the problems de-
scribed above, prices are simply additive in g and are unre-
lated to which goods are requested in a bundle, both unre-
alistic assumptions in some domains.

More fundamentally, Andersson et al.[1] note a critical
pricing problem that arises in several of the schemes dis-
cussed above. As the number of bids to be generated be-
comes large, a given short bid will be drawn much more
frequently than a given long bid. Since the highest-priced
bid for a bundle dominates all other bids for the same bun-
dle, short bids end up being much more competitive. In-
deed, it is pointed out that for extremely large numbers
of bids a good approximation to the optimal solution is
simply to take the best singleton bid for each good. One
solution to this problem is to guarantee that a bid will

2Most of the existing literature on artificial distributions
in combinatorial auctions refers to the monetary amount
associated with a bundle as a “price”. In Section 3 we will
advocate the use of different terminology, but in this section
we use the existing term for clarity.
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be placed for each bundle at most once (for example, this
approach is taken by Sandholm[24]). However, this solu-
tion has the drawback that it is unrealistic: different real
bidders are likely to place bids on some of the same bun-
dles.

Another solution to this problem is to make bundle prices
superadditive in the number of goods they request—an as-
sumption that may also be reasonable in many CA domains.
A similar approach is taken by deVries and Vohra [8], who
make the price for a bid a quadratic function of the prices
of bids for subsets. For some domains this pricing scheme
may result in too large an increase in price as a function
of bundle length. The distributions presented in this pa-
per will include a pricing scheme that may be configured
to be superadditive or subadditive in bundle length, where
appropriate, parameterized to control how rapidly the price
offered increases or decreases as a function of bundle length.

2.3.4 XOR bids
Finally, while most of the bid-generation techniques dis-

cussed above permit bidders to submit sets of bids XOR’ed
together, they have no way of generating meaningful sets of
such bids. As a consequence the computational impact of
XOR’ed bids has been very difficult to characterize.

3. GENERATING REALISTIC BIDS
While the lack of standardized, realistic test cases does

not make it impossible to evaluate or compare algorithms,
it does make it difficult to know what magnitude of real-
world problems each algorithm is capable of solving, or what
features of real-world problems each algorithm is capable of
exploiting. This second ambiguity is particularly troubling:
it is likely that algorithms would be designed differently if
they took the features of more realistic3 bidding into ac-
count.

3.1 Prices, price offers and valuations
The term “price” has traditionally been used by researchers

constructing artificial distributions to describe the amount
offered for a bundle. However, this term really refers to the
amount a bidder is made to pay for a bundle, which is of
course mechanism-specific and is often not the same as the
amount offered. Indeed, it is impossible to model bidders’
price offers at all without committing to a particular auction
mechanism. In the distributions described in this paper, we
will assume a sealed-bid incentive-compatible mechanism,
where the price offered for a bundle is equal to the bid-
der’s valuation. Hence, in the rest of this paper, we will use
the terms price offer and valuation interchangeably. Re-
searchers wanting to model bidding behavior in other mech-
anisms could transform the valuation generated by our dis-
tributions according to bidders’ equilibrium strategies in the
new mechanism.

3.2 The CATS suite

3Previous work characterizes hard cases for weighted set
packing—equivalent to the combinatorial auction problem.
Real-world bidding is likely to exhibit various regularities,
however, as discussed throughout this paper. A data set de-
signed to include the same regularities may be more useful
for predicting the performance of an algorithm in a real-
world auction.

In this paper we present CATS (Combinatorial Auction
Test Suite), a suite of distributions for modeling realistic
bidding behavior. This suite is grounded in previous re-
search on specific applications of combinatorial auctions, as
described in section 2.1 above. At the same time, all of
our distributions are parameterized by number of goods and
bids, facilitating the study of algorithm performance. This
suite represents a move beyond current work on modeling
bidding in combinatorial auctions because we provide an
economic motivation for both the contents and the valuation
of a bundle, deriving them from basic bidder preferences. In
particular, in each of our distributions:

• Certain goods are more likely to appear together than
others.

• The number of goods appearing in the bundle is often
related to which goods appear in the bundle.

• Valuations are related to which goods appear in the
bundle. Where appropriate, valuations can be config-
ured to be subadditive, additive or superadditive in
the number of goods requested.

• Sets of XOR’ed bids are constructed in meaningful
ways, on a per-bidder basis.

We do not intend for this paper to stand as an isolated
statement on bidding in combinatorial auctions, but rather
as the beginning of a dialogue. We hope to receive many
suggestions and criticisms from members of the CA com-
munity, enabling us both to update the distributions pro-
posed here and to include distributions modeling new do-
mains. In particular, our distributions include many param-
eters, for which we suggest default values. Although these
values have evolved somewhat during our development of
the test suite, it has not yet been possible to understand
the role each parameter plays in the difficulty or realism
of the resulting distribution, and our choice may be seen
as highly subjective. We hope and expect to receive criti-
cisms about these parameter values; for this reason we in-
clude a CATS version number with the defaults to differ-
entiate them from future defaults. The suite also contains
a legacy section including all bid generation techniques de-
scribed above, so that new algorithms may easily be com-
pared to previously-published results. More information on
our test suite, including executable versions of our distri-
butions for Solaris, Linux and Windows may be found at
http://robotics.stanford.edu/CATS .

In section 4, below, we present distributions based on five
real-world situations. For most of our distributions, the
mechanism for generating bids requires first building a graph
representing adjacency relationships between goods. Later,
the mechanism uses the graph, generated in an economically-
motivated way, to derive complementarity properties be-
tween goods and substitutability properties for bids. Of the
five real-world situations we model, the first three concern
complementarity based on adjacency in (physical or con-
ceptual) space, while the final two concern complementarity
based on correlation in time. Our first example (4.1) mod-
els shipping, rail and bandwidth auctions. Goods are repre-
sented as edges in a nearly planar graph, with agents submit-
ting an XOR’ed set of bids for paths connecting two nodes.
Our second example (4.2) models an auction of real estate,
or more generally of any goods over which two-dimensional
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adjacency is the basis of complementarity. Again the rela-
tionship between goods is represented by a graph, in this
case strictly planar. In (4.3) we relax the planarity assump-
tion from the previous example in order to model arbitrary
complementarities between discrete goods such as electron-
ics parts or collectables. Our fourth example (4.4) concerns
the matching of time-slots for a fixed number of different
goods; this case applies to airline take-off and landing rights
auctions. In (4.5) we discuss the generation of bids for a
distributed job-shop scheduling domain, and also its appli-
cation to power generation auctions. Finally, in (4.6), we
provide a legacy suite of bid generation techniques, includ-
ing all those discussed in (2.3) above.

In the description of the distributions that follow, let
rand(a, b) represent a real number drawn uniformly from
[a, b]. Let rand int(a, b) represent a random integer drawn
uniformly from the same interval. With respect to a given
graph, let e(x, y) represent the proposition that an edge ex-
ists between nodes x and y. Denote the number of goods in
a bundle B as |B|. The statement a good g is in a bundle
B means that g ∈ B. All of the distributions presented here
are parameterized by the number of goods (num goods) and
number of bids (num bids).

4. CATS IN DETAIL

4.1 Paths in Space
There are many real-world problems involving bidding on

paths in space. Generally, this class may be characterized as
the problem of purchasing a connection between two points.
Examples include truck routes [23], natural gas pipeline net-
works [20], network bandwidth allocation, and the right to
use railway tracks [5].4 In particular, spatial path problems
consist of a set of points and accessibility relations between
them. Although the distribution we propose may be config-
ured to model bidding in any of the above domains, we will
use the railway domain as our motivating example since it
is both intuitive and well-understood.

More formally, we will represent this railroad auction by
a graph in which each node represents a location on a plane,
and an edge represents a connection between locations. The
goods at auction are therefore the edges of the graph, and
bids request a set of edges that form a path between two
nodes. We assume that no bidder will desire more than one
path connecting the same two nodes, although the bidder
may value each path differently.

4.1.1 Building the Graph
The first step in modeling bidding behavior for this prob-

lem is determining the graph of spatial and connective re-
lationships between cities. One approach would be to use
an actual railroad map, which has the advantage that the
resulting graph would be unarguably realistic. However,

4Electric power distribution is a frequently discussed real
world problem which seems superficially similar to the prob-
lems discussed here. However, many of the complementari-
ties in this domain arise from physical laws governing power
flow in a network. Consideration of these laws becomes very
complex in networks of interesting size. Also, because these
laws are taken into account during the construction of power
networks, the networks themselves are difficult to model us-
ing randomly generated graphs. For these reasons, we do
not attempt to model this domain.
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Figure 1: Sample Railroad Graph

it would be difficult to find a set of real-world maps that
could be said to exhibit a similar sort of connectivity and
would encompass substantial variation in the number of
cities. Since scalability of input data is of great importance
to the testing of new CA algorithms, we have chosen to
propose generating such graphs randomly. Our technique
for generating graphs has various parameters that may be
adjusted as necessary; in our opinion it produces realistic
graphs with the recommended settings. Figure 1 shows a
representative example of a graph generated using our tech-
nique.

We begin with num cities nodes randomly placed on a
plane. We add edges to this graph, G, starting by connecting
each node to a fixed number of its nearest neighbors. Next,
we iteratively consider random pairs of nodes and examine
the shortest path connecting them, if any. To compare, we
also compute various alternative paths that would require
one or more edges to be added to the graph, given a penalty
proportional to distance for adding new edges. (We do this
by considering a complete graph C, an augmentation of G
with new edges weighted to reflect the distance penalty.) If
the shortest path involves new edges—despite the penalty—
then the new edges (without penalty) are added to G, and
replace the existing edges in C. This process models our sim-
plifying assumption that there will exist uniform demand for
shipping between any pair of cities, though of course it does
not mimic the way new links would actually be added to
a rail network. Our technique produces slightly non-planar
graphs—graphs on a plane in which edges occasionally cross
at points other than nodes. We consider this to be reason-
able, as the same phenomenon may be observed in real-world
rail lines, highways, network wiring, etc. Determining the
“reasonableness” of a graph is of course a subjective task
unless more quantitative metrics are used to assess quality;
we see the identification and application of such metrics (for
this and other distributions) as an important topic for future
work.

4.1.2 Generating Bids
Given a map of cities and the connectivity between them,

there is the orthogonal problem of modeling bidding itself.
We propose a method which generates a set of substitutable
bids from a hypothetical agent’s point of view. We start
with the value to an agent for shipping from one city to
another and with a shipping cost which we make equal to the
Euclidean distance between the cities. We then place XOR
bids on all paths on which the agent would make a profit
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Let num cities = f(num goods)
Randomly place nodes (cities) on a unit box
Connect each node to its initial connections
nearest neighbors

For i = 1 to num building paths:
C = G
For every pair of nodes n1, n2 ∈ G where
¬e(n1, n2):

Add an edge to C of length
building penalty ·
Euclidean distance(n1, n2)

Choose two nodes at random, and find the
shortest path between them in C

If shortest path uses edges that do not
exist in G:

For every such pair of nodes
n1, n2 ∈ G add an edge to G with
length Euclidean distance(n1, n2)

End If
End For
If total number of edges in G �= num goods,
restart

Figure 2: Graph-Building Technique

While num generated bids < num bids:

Randomly choose two nodes, n1 and n2

d = rand(1, shipping cost factor)
cost = Euclidean distance(city1, city2)
value = d · Euclidean distance(city1, city2)
Make XOR bids of value − cost on every path
from city1 to city2 with cost < value

If there are more than max bid set size such
paths, bid on the max bid set size paths
that maximize value − cost.

End While

Figure 3: Bid-Generation Technique

(i.e., those paths where utility−cost > 0). The path’s value
is random, in (parameterized) proportion to the Euclidean
distance between the chosen cities. Since the shipping cost
is the Euclidean distance between two cities, we use this as
the lower bound for value as well, since only bidders with
such valuations would actually place bids.

Note that this distribution, and indeed all others pre-
sented in this paper, may generate slightly more than num bids
bids. In our experience CA optimization algorithms tend not
to be highly sensitive in the number of bids, so we judged it
more important to build economically sensible sets of sub-
stitutable bids. When generating a precise number of bids is
important, an appropriate number of bids may be removed
after all bids have been generated so that the total will be
met exactly.

Note that 1 is used as a lower bound for d because any bid-
der with d < 1 would find no profitable paths and therefore
would not bid.

This is CATS 1.0 problem 1. CATS default param-
eters: initial connections = 2, building penalty =
1.7, num building paths = num cities2/4,
shipping cost factor = 1.5, max bid set size = 5,
and f(num goods) = 0.529689 ∗ NUMGOODS + 3.4329.

4.1.3 Multi-Unit Extensions: Bandwidth Allocation,
Commodity Flow

This model may also be used to generate realistic data

Place nodes at integer vertices (i, j) in a

plane, where 1 ≤ i, j ≤ �√(num goods)�
For each node n:

If n is on the edge of the map
Connect n to as many hv-neighbors as
possible

Else
If rand(0, 1) ≤ three prob

Connect n to a random set of
three of its four hv-neighbors

Else
Connect n to all four of its
hv-neighbors

While rand(0, 1) ≤ additional neighbor:

Connect g to one of its
d-neighbors, provided that the
new diagonal edge will not
cross another diagonal edge

End While
End For

Figure 4: Graph-Building Technique

for multi-unit CA problems such as network bandwidth al-
location and general commodity flow. The graph may be
created as above, but with a number of units (capacity)
assigned to each edge. Likewise, the bidding technique re-
mains unchanged except for the assignment of a number of
units to each bid.

4.2 Proximity in Space
There is a second broad class of real-world problems in

which complementarity arises from adjacency in two-dimen-
sional space. An intuitive example is the sale of adjacent
pieces of real estate [19]. Another example is drilling rights,
where it is much cheaper for an (e.g.) oil company to drill
in adjacent lots than in lots that are far from each other. In
this section, we first propose a graph-generation mechanism
that builds a model of adjacency between goods, and then
describe a technique for generating realistic bids on these
goods. Note that in this section nodes of the graph represent
the goods at auction, while edges represent the adjacency
relationship.

4.2.1 Building the Graph
There are a number of ways we could build an adjacency

graph. The simplest would be to place all the goods (loca-
tions, nodes) in a grid, and connect each to its four neigh-
bors. We propose a slightly more complex method in order
to permit a variable number of neighbors per node (equiva-
lent to non-rectangular pieces of real estate). As above we
place all goods on a grid, but with some probability we omit
a connection between goods that would otherwise represent
vertical or horizontal adjacency, and with some probabil-
ity we introduce a connection representing diagonal adja-
cency. (We call horizontally- or vertically-adjacent nodes
hv-neighbors and diagonally-adjacent nodes d-neighbors.)

Figure 5 shows a sample real estate graph, generated by
the technique described in Figure 4. Nodes of the graph are
shown with asterisks, while edges are represented by solid
lines. The dashed lines show one set of property boundaries
that would be represented by this graph. Note that one
node falls inside each piece of property, and that two pieces
of property border each other iff their nodes share an edge.
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Figure 5: Sample Real Estate Graph

4.2.2 Generating Bids
To model realistic bidding behavior, we generate a set of

common values for each good, and private values for each
good for each bidder. The common value represents the
appraised or expected resale value of each individual good.
The private value represents how much one particular bidder
values that good, as an offset to the common value (e.g., a
private value of 0 for a good represents agreement with the
common value). These private valuations describe a bidder’s
preferences, and so they are used to determine both a value
for a given bid and the likelihood that a bidder will request
a bundle that includes that good. There are two additional
components to each bidder’s preferences: a minimum total
common value, and a budget. The former reflects the idea
that a bidder may only wish to acquire goods of a certain
recognized value. The latter reflects the fact that a bidder
may not be able to afford every bundle that is of interest to
him.

To generate bids, we first add a random good, weighted
by a bidder’s preferences, to the bidder’s bid. Next, we
determine whether another good should be added by draw-
ing a value uniformly from [0,1], and adding another good
if this value is smaller than a threshold. This is equiva-
lent to drawing the number of goods in a bid from a de-
cay distribution.56 We must now decide which good to
add. First we allow a small chance that a new good will
be added uniformly at random from the set of goods, with-
out the requirement that it be adjacent to a good in the
current bundle B . (This permits bundles requesting un-
connected regions of the graph: for example, a hotel com-
pany may only wish to build in a city if it can acquire
land for two hotels on opposite sides of the city.) Oth-
erwise, we select a good from the set of nodes bordering
the goods in B. The probability that some adjacent good

5We use Sandholm’s [24] term “decay” here, though the
distribution goes by various names—for a description of the
distribution please see Section 4.6.1.
6There are two reasons we use a decay distribution here.
First, we expect that most bids will request small bundles;
a uniform distribution, on the other hand, would be ex-
pected to have the same number of bids for bundles of each
cardinality. Also, bids for large bundles will often be com-
putationally easier for CA algorithms than bids for small
bundles, because choosing the former more highly restricts
the future search. Second, we require a distribution where
the expected bundle size is unaffected by changes in the total
number of goods. Some other distributions, such as uniform
and binomial, do not have this property.

Routine Add Good to Bundle(bundle B)
If rand(0, 1) ≤ jump prob:

Add a good g /∈ b to B, chosen
uniformly at random

Else:
Compute s =

∑
x/∈B,y∈B,e(x,y) pn(x) [pn()

is defined below]
Choose a random node x /∈ B from the

distribution
∑

y∈B,e(x,y)
pn(x)

s
Add x to B

End If
End Routine

Figure 6: Add Good to Bundle for Spatial Proxim-
ity

n1 will be added depends on how many edges n1 shares
with the current bundle, and on the bidder’s relative pri-
vate valuations for n1 and n2. For example, if nodes n1 and
n2 are each connected to B by one edge, and the private
valuation for n1 is twice that for n2 then the probability
of adding n1 to B, p(n1), is 2p(n2). Further, if n1 has 3
edges to nodes in B while n2 is connected to B by only
1 edge, and the goods have equivalent private values, then
p(n1) = 3p(n2). Once we have determined all the goods
in a bundle we set the price offered for the bundle, which
depends on the sum of common and private valuations for
the goods in the bundle, and also includes a function that is
superadditive (with our parameter settings) in the number
of goods.7 Finally, we generate additional bids that are sub-
stitutable for the original bid, with the constraint that each
bid in the set requests at least one good from the original
bid.

This is CATS 1.0 problem 2. CATS default param-
eters: three prob = 1.0, additional neighbor = 0.2,
max good value = 100, max substitutable bids = 5,
additional location = 0.9, jump prob = 0.05, additivity =
0.2, deviation = 0.5, budget factor = 1.5, resale factor =
0.5, and S(n) = n1+additivity. Note that additivity = 0 gives
additive bids, and additivity < 0 gives sub-additive bids.

4.2.3 Spectrum Auctions
A related problem is the auction of radio spectrum, in

which a government sells the right to use specific segments
of spectrum in different geographical areas[18, 2].8 It is pos-
sible to approximate bidding behavior in spectrum auctions
by making the assumption that all complementarity arises
from spatial proximity.9 In this case, our spatial proximity
model can also be used to generate realistic bidding distri-
butions for spectrum auctions. The main difference between
this problem and the real estate problem is that in a spec-
trum auction each good may have multiple units (frequency
bands) for sale. It is insufficient to model this as a multi-
unit CA problem, however, if bidders have the constraint

7Recall the discussion in Section 2.3.3 motivating the use
of superadditive valuations.
8Spectrum auctions have not historically been formulated
as general CA’s, but the possibility of doing so is now being
explored.
9This assumption would be violated, for example, if some
bidders wanted to secure some spectrum in all metropolitan
areas. Clearly the problem of realistic test data for spectrum
auctions remains an area for future work.
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For all g, c(g) = rand(1, max good value)
While num generated bids < num bids:

For each good, reset
p(g) = rand(−deviation ·
max good value, deviation + max good value)

pn(g) =
p(g)+deviation·max good value

2·deviation·max good value

Normalize pn(g) so that
∑

g pn(g) = 1

B = {}
Choose a node g at random, weighted by

pn(), and add it to B
While rand(0, 1) ≤ additional location

Add Good to Bundle(B)
value(B) =

∑
x∈B(c(x) + p(x)) + S(|B|)

If value(B) ≤ 0 on B, restart bundle
generation for this bidder

Bid value(B) on B
budget = budget factor · value(B)
min resale value = resale factor · ∑x∈B c(x)
Construct substitutable bids. For each
good gi ∈ B:

Initialize a new bundle, Bi = {gi}
While |Bi| < |B|:

Add Good to Bundle(Bi)
Compute ci =

∑
x∈Bi

c(x)
End For
Make XOR bids on all Bi where

0 ≤ value(B) ≤ budget and
ci ≥ min resale value.

If there are more than
max substitutable bids such bundles, bid
on the max substitutable bids bundles
having the largest value

End While

Figure 7: Bid-Generation Technique

that they want the same frequency in each region.10 In-
stead, the problem can be modeled with multiple distinct
goods per node in the graph, and bids constructed so that
all nodes added to a bundle belong to the same ‘frequency’.
With this method, it is also easy to incorporate other pref-
erences, such as preferences for different types of goods. For
instance, if two different types of frequency bands are being
sold, one 5 megahertz wide and one 2.5 megahertz wide, an
agent only wanting 5 megahertz bands could make substi-
tutable bids for each such band in the set of regions desired
(generating the bids so that the agent will acquire the same
frequency in all the regions).

The scheme for generating price offers used in our real
estate example may be inappropriate for the spectrum auc-
tion domain. Research indicates that while price offers will
still tend to be superadditive, this superadditivity may be
quadratic in the population of the region rather than ex-
ponential in the number of regions [2]. CATS includes a
quadratic pricing option that may be used with this prob-
lem, in which the common value term above is used as a
measure of population. Please see the CATS documenta-
tion for more details.

10To see why this cannot be modeled as a multi-unit CA,
consider an auction for three regions with two units each,
and three bidders each wanting one unit of two goods. In
the optimal allocation, b1 gets 1 unit of g1 and 1 unit of g2,
b2 gets 1 unit of g2 and 1 unit of g3, and b3 gets 1 unit of g3

and 1 unit of g1. In this example there is no way of assigning
frequencies to the units so that each bidder gets the same
frequency in both regions.

Build a fully-connected graph with one node for
each good

Label each edge from n1 to n2 with a weight
d(n1, n2) = rand(0, 1)

Figure 8: Graph-Building Technique

Routine Add Good to Bundle(bundle B)
Compute s =

∑
x/∈b,y∈B d(x, y) · pn(x)

Choose a random node x /∈ B from the

distribution
∑

y∈B d(x, y) · pn(x)
s

Add x to B
End Routine

Figure 9: Routine Add Good to Bundle for Arbi-
trary Relationships

4.3 Arbitrary Relationships
Sometimes complementarities between goods will not be

as universal as geographical adjacency, but some kind of reg-
ularity in the complementarity relationships between goods
will still exist. Consider an auction of different, indivisi-
ble goods, e.g. for semiconductor parts or collectables, or
for distinct multi-unit goods such as the right to emit some
quantity of two different pollutants produced by the same
industrial process. In this section we discuss a general way
of modeling such arbitrary relationships.

4.3.1 Building the Graph
We express the likelihood that a particular pair of goods

will appear together in a bundle as being proportional to the
weight of the appropriate edge of a fully-connected graph.
That is, the weight of an edge between n1 and n2 is propor-
tional to the probability that, having only n1 in our bundle,
we will add n2. Weights are only proportional to probabili-
ties because we must normalize the sum of all weights from
a given good to 1 in order to calculate a probability.

4.3.2 Generating Bids
Our technique for modeling bidding is a generalization of

the technique presented in the previous section. We choose
a first good and then proceed to add goods one by one, with
the probability of each new good being added depending
on the current bundle. Note that, since in this section the
graph is fully-connected, there is no need for the ‘jumping’
mechanism described above. The likelihood of adding a new
good g to bundle B is proportional to

∑
y∈B d(x, y) · pi(x).

The first term d(x, y) represents the likelihood (independent
of a particular bidder) that goods x and y will appear in
a bundle together; the second, pi(x), represents bidder i’s
private valuation of the good x. We implement this new
mechanism by changing the routine Add Good to Bundle().
We are thus able to use the same techniques for assigning a
value to a bundle, as well as for determining other bundles
with which it is substitutable.

This is CATS 1.0 problem 3. CATS default param-
eters: max good value = 100, additional good = 0.9,
max substitutable bids = 5, additivity = 0.2, deviation =
0.5, budget factor = 1.5, resale factor = 0.5, and S(n) =
n1+additivity.

4.3.3 Multi-Unit Pollution Rights Auctions: Future
Work
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Bidding in pollution-rights auctions[18, 13] may be mod-
eled through a multi-unit generalization of the technique
presented in this section. In such auctions, the government
sells companies the right to generate specific amounts of
some pollutant. In the United States, though these auc-
tions are widely used, sulfur-dioxide is the only chemical
for which they are the primary method of control. Cur-
rent US pollution-rights auctions may therefore be modeled
as single good multi-unit auctions. If the government were
to conduct pollution rights auctions for multiple pollutants
in the future, however, bidding would be best-represented
as a multi-unit ‘Arbitrary Complementarity’ problem. The
problem belongs to this class because some sets of pollutants
are more likely to be produced than others, yet the relation-
ship between pollutants can not be modeled through any
notion of adjacency. Should such auctions become viable in
the future, we hope that a pollution-rights distribution will
be added to CATS .

4.4 Temporal Matching
We now consider real-world domains in which complemen-

tarity arises from a temporal relationship between goods. In
this section we discuss matching problems, in which corre-
sponding time slices must be secured on multiple resources.
The general form of temporal matching includes m sets of
resources, in which each bidder wants 1 time slice from
each of j ≤ m sets subject to certain constraints on how
the times may relate to one another (e.g., the time in set
2 must be at least two units later than the time in set
3). Here we concern ourselves with the problem in which
j = 2, and model the problem of airport take-off and land-
ing rights. Rassenti et al. [21] made the first study of auc-
tions in this domain. The problem has been the topic for
much other work; in particular [11] includes detailed exper-
iments and an excellent characterization of bidder behav-
ior.

The airport take-off and landing problem arises because
certain high-traffic airports require airlines to purchase the
right to take off or land during a given time slice. However,
if an airline buys the right for a plane to take off at one
airport then it must also purchase the right for the plane
to land at its destination an appropriate amount of time
later. Thus, complementarity exists between certain pairs
of goods, where goods are the right to use the runway at a
particular airport at a particular time. Substitutable bids
are different departure/arrival packages; therefore bids will
only be substitutable within certain limits.

4.4.1 Building the Graph
Departing from our graph-based approach above, we ground

this example in the real map of high-traffic US airports for
which the Federal Aviation Administration auctions take-off
and landing rights, described in [11]. These are the four bus-
iest airports in the United States: La Guardia International,
Ronald Reagan Washington National, John F. Kennedy In-
ternational, and O’Hare International. This map is shown
below.

We chose not to use a random graph in this example be-
cause the number of bids and goods is dependent on the
number of bidders and time slices at the given airports; it
is not necessary to modify the number of airports in or-
der to vary the problem size. Thus, num cities = 4 and
num times = �num goods/num cities�.

38.5

39

39.5

40

40.5

41

41.5

42

42.5

-88 -86 -84 -82 -80 -78 -76 -74 -72

La
tit

ud
e

Longitude

O’Hare

Reagan

Kennedy

LaGuardia

"airports"
"airways"

Figure 10: Map of Airport Locations

4.4.2 Generating Bids
Our bidding mechanism presumes that airlines have a

certain tolerance for when a plane can take off and land
(early takeoff deviation, late takeoff deviation,
early land deviation, late land deviation), as related to
their most preferred take-off and landing times (start time,
start time + min flight length). We generate bids for all
bundles that fit these criteria. The value of a bundle is de-
rived from a particular agent’s utility function. We define a
utility umax for an agent, which corresponds to the utility
the agent receives for flying from city1 to city2 if it receives
the ideal takeoff and landing times. This utility depends on
a common value for a time slot at the given airport, and
deviates by a random amount. Next we construct a util-
ity function which reduces umax according to how late the
plane will arrive, and how much the flight time deviates from
optimal.

This is CATS 1.0 problem 4. CATS default parameters:
max airport value = 5, longest flight length = 10,
deviation = 0.5, early takeoff deviation = 1,
late takeoff deviation = 2, early land deviation =
1, late land deviation = 2, delay coeff = 0.9, and
amount late coeff = 0.75.

4.5 Temporal Scheduling
Wellman et al. [26] proposed distributed job-shop schedul-

ing with one resource as a CA problem. We provide a dis-
tribution that mirrors this problem. While there exist many
algorithms for solving job-shop scheduling problems, the dis-
tributed formulation of this problem places it in an economic
context. In the problem formulation from Wellman et al., a
factory conducts an auction for time-slices on some resource.
Each bidder has a job requiring some amount of machine
time, and a deadline by which the job must be completed.
Some jobs may have additional, later deadlines which are
less desirable to the bidder and so for which the bidder is
willing to pay less.

4.5.1 Generating Bids
In the CA formulation of this problem, each good repre-

sents a specific time-slice. Two bids are substitutable if they
constitute different possible schedules for the same job. We
determine the number of deadlines for a given job according
to a decay distribution, and then generate a set of substi-
tutable bids satisfying the deadline constraints. Specifically,
let the set of deadlines of a particular job be d1 < · · · < dn

and the value of a job completed by d1 be v1, superadditive
in the job length. We define the value of a job completed by
deadline di as vi = v1 · d1

di
, reflecting the intuition that the
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Set the average valuation for each city’s
airport: cost(city) = rand(0, max airport value)

Let max l = length of longest distance between
any two cities

While num generated bids < num bids:

Randomly select city1 and city2 where
e(city1, city2)

l = distance(city1, city2)
min flight length =

round(longest flight length · 1
max l

)
start time =

rand int(1, num times − min flight length)
dev = rand(1 − deviation, 1 + deviation)
Make substitutable (XOR) bids. For

takeoff =
max(1, start time − early takeoff deviation)
to min(num times, start time +
late takeoff deviation):

For land = takeoff + min flight length
to
min(start time + min flight length +
late land deviation, num times):

amount late =
min(land − (start time +
min flight length), 0)

delay =
land−takeoff−min flight length

Bid dev · (cost(city1) + cost(city2)) ·
delay coeffdelay ·
amount late coeffamount late for
takeoff at time takeoff at
city1 and landing at time land
at city2

End For
End For

End While

Figure 11: Bid-Generation Technique

decrease in value for a later deadline is proportional to its
‘lateness’.

Note that, like Wellman et al., we assume that all jobs
are eligible to be started in the first time-slot. Our for-
mulation of the problem differs in only one respect—we
consider only allocations in which jobs receive continuous
blocks of time. However, this constraint is not restrictive
because for any arbitrary allocation of time slots to jobs
there exists a new allocation in which each job receives a
continuous block of time and no job finishes later than in
the original allocation. (This may be achieved by num-
bering the winning bids in increasing order of scheduled
end time, and then allocating continuous time-blocks to
jobs in this order. Clearly no job will be rescheduled to
finish later than its original scheduled time.) Note also
that this problem cannot be translated to a trivial one-good
multi-unit CA problem because jobs have different dead-
lines.

This is CATS 1.0 problem 5. CATS default parame-
ters: deviation = 0.5, prob additional deadline = 0.9,
additivity = 0.2, and max length = 10. Note that we pro-
pose a constant maximum job length, because the length
of time a job requires should not depend on the amount of
time the auctioneer makes available.

4.5.2 Multi-Unit Power Generation Auctions: Future
Work

While num generated bids < num bids:

l = rand int(1, max length)
d1 = rand int(l, num goods)
dev = rand(1 − deviation, 1 + deviation)
cur max deadline = 0
new d = d1

To generate substitutable (XOR) bids. Do:

Make bids with price offered
= dev · l1+additivity · d1/new d for all
blocks [start, end] where start ≥ 1,
end ≤ new d, end > cur max deadline,
end − start = l

cur max deadline = new d
new d = rand int(cur max deadline +

1, num goods)
While rand(0, 1) ≤ prob additional deadline

End While

Figure 12: Bid-Generation Technique

The problem of scheduling power generation is superfi-
cially similar to the job-shop scheduling problem described
above. In these auctions, electrical power generation com-
panies bid to produce a certain quantity of power for each
hour of the day. This new problem differs from job-shop
scheduling primarily because different kinds of power plants
will exhibit very different utility functions, considering dif-
ferent sorts of goods to be complementary. For example,
some plants will want to produce for long blocks of time
(because they have startup and shutdown costs), others will
prefer certain times of day due to labor costs, and still oth-
ers will have neither restriction [9]. Due to the domain-
specific complexity of bidder utilities, the construction of
a distribution for this problem remains an area for future
work.

4.6 Legacy Distributions
To aid researchers designing new CA algorithms by facil-

itating comparison with previous work, CATS includes the
ability to generate bids according to all previous published
test distributions of which we are aware, that are able to
scale with the number of goods and bids. Each of these
distributions may be seen as an answer to three questions:
what number of goods to request in a bundle, which goods
to request, and the price offered for a bundle. We begin by
describing different techniques for answering each of these
three questions, and then show how they have been com-
bined in previously published work.

4.6.1 Number of Goods
Uniform: Uniformly distributed on [1, num goods]
Normal: Normally distributed with µ = µ goods and σ =
σ goods
Constant: Fixed at constant goods
Decay: Starting with 1, repeatedly increment the size of
the bundle until rand(0, 1) exceeds α
Binomial: Request n goods with probability
pn(1 − p)num goods−n

(
num goods

n

)

Exponential: Request n goods with probability C exp−n/q

4.6.2 Which Goods
Random: Draw n random goods from the set of all goods,
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without replacement11

4.6.3 Price Offer
Fixed Random: Uniform on [low fixed, hi fixed].
Linear Random: Uniform on [low linearly·n, hi linearly·
n]
Normal: Draw from a normal distribution with µ = µ price
and σ = σ price
Quadratic12: For each good k and each bidder i set the
value vi

k = rand(0, 1). Then i’s price offer for a set of goods
S is

∑
k∈S vi

k +
∑

k,q vi
kvi

q.

4.7 Previously Published Distributions
The following is a list of the distributions used in all pub-

lished tests of which we are aware. In each case we describe
first the method used to choose the number of goods, fol-
lowed by the method used to choose the price offer. In all
cases the ‘random’ technique was used to determine which
goods should be requested in a bundle. Each case is labeled
with its corresponding CATS legacy suite number; very sim-
ilar distributions are given similar numbers and identical
distributions are given the same number.
[L1] Sandholm: Uniform, fixed random with low fixed = 0,
hi fixed = 1
[L1a] Andersson et al.: Uniform, fixed random with
low fixed = 0, hi fixed = 1000
[L2] Sandholm: Uniform, linearly random with
low linearly = 0, hi linearly = 1
[L2a] Andersson et al.: Uniform, linearly random with
low linearly = 500, hi linearly = 1500
[L3] Sandholm: Constant with constant goods = 3, fixed
random with low fixed = 0, hi fixed = 1
[L3] deVries and Vohra: Constant with constant goods = 3,
fixed random with low fixed = 0, hi fixed = 1
[L4] Sandholm: Decay with α = 0.55, linearly random with
low linearly = 0, hi linearly = 1
[L4] deVries and Vohra: Decay with α = 0.55, linearly
random with low linearly = 0, hi linearly = 1
[L4a] Andersson et al.: Decay with α = 0.55, linearly
random with low linearly = 1, hi linearly = 1000
[L5] Boutilier et al.: Normal with µ goods = 4 and
σ goods = 1, normal with µ price = 16 and σ price = 3
[L6] Fujishima et al.: Exponential with q = 5, linearly
random with low linearly = 0.5, hi linearly = 1.5
[L6a] Andersson et al.: Exponential with q = 5, linearly
random with low linearly = 500, hi linearly = 1500
[L7] Fujishima et al.: Binomial with p = 0.2, linearly
random with low linearly = 0.5, hi linearly = 1.5
[L7a] Andersson et al.: Binomial with p = 0.2, linearly
random with low linearly = 500, hi linearly = 1500
[L8] deVries and Vohra: Constant with constant goods = 3,
quadratic

Parkes [17] used many of the test sets described above
(particularly those described by Sandholm and Boutilier et

11Although in principle the problem of which goods to re-
quest could be answered in many ways, all legacy distribu-
tions of which we are aware use this technique.

12DeVries and Vohra [8] briefly describe a more general ver-
sion of this price offer scheme, but do not describe how to set
all the parameters (e.g., defining which goods are comple-
mentary); hence we do not include it here. Quadratic price
offers may be particularly applicable to spectrum auctions;
see [2].

al.), but tested with fixed numbers of goods and bids rather
than scaling these parameters.

5. CONCLUSION
In this paper we introduced CATS , a test suite for combi-

natorial auction optimization algorithms. The distributions
in CATS represent a step beyond current CA testing tech-
niques because they are economically motivated and model
real-world problems. It is our hope that, with the help of
others in the CA community, CATS will evolve into a univer-
sal test suite that will facilitate the development and evalu-
ation of new CA optimization algorithms.
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Abstract

R�max is an extremely simple model�based reinforcement learning algorithm which
can attain near�optimal average reward in polynomial time� In R�max� the agent always
maintains a complete� but possibly inaccurate model of its environment and acts based
on the optimal policy derived from this model� The model is initialized in an optimistic
fashion� all actions in all states return the maximal possible reward �hence the name��
During execution� it is updated based on the agent�s observations� R�max improves upon
several previous algorithms� ��� It is simpler and more general than Kearns and Singh�s E�

algorithm� covering zero�sum stochastic games� ��� It has a built�in mechanism for resolving
the exploration vs� exploitation dilemma� �	� It formally justi
es the �optimism under
uncertainty� bias used in many RL algorithms� �� It is simpler� more general� and more
e�cient than Brafman and Tennenholtz�s LSG algorithm for learning in single controller
stochastic games� ��� It generalizes the algorithmbyMonderer and Tennenholtz for learning
in repeated games� ��� It is the only algorithm for learning in repeated games� to date�
which is provably e�cient� considerably improving and simplifying previous algorithms by
Banos and by Megiddo�

�� Introduction

Reinforcement learning has attracted the attention of researchers in AI and related �elds
for quite some time� Many reinforcement learning algorithms exist and for some of them
convergence rates are known� However� Kearns and Singh�s E� algorithm �Kearns � Singh�
����	 was the �rst provably near
optimal polynomial time algorithm for learning in Markov
decision processes �MDPs	� E� was extended later to handle single controller stochastic
games �SCSGs	 �Brafman � Tennenholtz� ����	 as well as structured MDPs �Kearns �
Koller� ����	� In E� the agent learns by updating a model of its environment using statistics
it collects� This learning process continues as long as it can be done relatively eciently�
Once this is no longer the case� the agent uses its learned model to compute an optimal
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policy and follows it� The success of this approach rests on two important properties� the
agent can determine online whether an ecient learning policy exists� and if such a policy
does not exist� it is guaranteed that the optimal policy with respect to the learned model
will be approximately optimal with respect to the real world�

The diculty in generalizing E� to adverserial contexts� i�e�� to di�erent classes of games�
stems from the adversary�s ability to in�uence the probability of reaching di�erent states�
In a game� the agent does not control its adversary�s choices� nor can it predict them with
any accuracy� Therefore� it has diculty predicting the outcome of its actions and whether
or not they will lead to new information� Consequently� it is unlikely that an agent can
explicitly choose between an exploration and an exploitation policy� For this reason� the
only extension of E� to adverserial contexts used the restricted SCSG model in which the
adversary in�uences the reward of a game only� and not its dynamics�

To overcome this problem� we suggest a di�erent approach in which the agent never
attempts to learn explicitly� Our agent always attempts to optimize its behavior� albeit
with respect to a �ctitious model in which optimal behavior often leads to learning� This
model assumes that the reward the agent obtains in any situation it is not too familiar
with� is the maximal possible reward � Rmax� The optimal policy with respect to the
agent�s �ctitious model has a very interesting and useful property with respect to the real
model� it is always either optimal or it leads to ecient learning� The agent does not know
whether it is optimizing or learning eciently� but it always does one or the other� Thus� the
agent will always either exploit or explore eciently� without knowing ahead of time which
of the two will occur� Since there is only a polynomial number of parameters to learn� as
long as learning is done eciently we can ensure that the agent spends a polynomial number
of steps exploring� and the rest of the time will be spent exploiting� Thus� the resulting
algorithm may be said to use an implicit explore or exploit approach� as opposed to Kearns
and Singh�s explicit explore or exploit approach�

This learning algorithm� which we call R�max� is very simple to understand and to
implement� The algorithm converges in polynomial
time to a near
optimal solution� More

over� R�max is described in the context of zero
sum stochastic game� a model that is more
general than Markov Decision Processes� As a consequence� R�max is more general and
more ecient than a number of previous results� It generalizes the results of Kearns and
Singh �����	 to adverserial contexts and to situations where the agent considers a stochas

tic model of the environment inappropriate� opting for a non
deterministic model instead�
R�max can handle more classes of stochastic games than the LSG algorithm �Brafman �
Tennenholtz� ����	� In addition� it attains a higher expected average reward than LSG�
R�max also improves upon previous algorithms for learning in repeated games �Aumann
� Maschler� ����	� such as Megiddo�s �Megiddo� ����	 and Banos �Banos� ����	� It is the
only polynomial time algorithm for this class of games that we know of� and it is much sim

pler� too� Finally� R�max generalizes the results of Monderer and Tennenholtz �Monderer
� Tennenholtz� ����	 to handle the general probabilistic maximin �safety level	 decision
criterion�

The approach taken by R�max is not new� It has been referred to as the optimism in the
face of uncertainty heuristic� and was considered an ad
hoc� though useful� approach �e�g��
see Section ����� in �Kaelbling� Littman� �Moore� ����	� where it appears under the heading
�Ad
Hoc Techniques� and Section ��� in �Sutton � Barto� ����	 where this approach is
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called optimistic initial values and is referred to as a �simple trick that can be quite e�ective
on stationary problems�	� This optimistic bias has been used in a number of well
known
reinforcement learning algorithms� e�g� Kaelbling�s interval exploration method �Kaelbling�
����	� the exploration bonus in Dyna �Sutton� ����	� the curiosity
driven exploration of
�Schmidhuber� ����	� and the exploration mechanism in prioritized sweeping �Moore �
Atkenson� ����	� More recently� Tadepalli and Ok �Tadepalli � Ok� ����	 presented a
reinforcement learning algorithm that works in the context of the undiscounted average

reward model used in this paper� In particular� one variant of their algorithm� called AH

learning� is very similar to R�max� However� as we noted above� none of this work provides
theoretical justi�cation for this very natural bias� Thus� an additional contribution of this
paper is a formal justi�cation for the optimism under uncertainty bias�

The paper is organized as follows� in Section � we de�ne the learning problem more
precisely and the relevant parameters� In Section � we describe the R�max algorithm� In
Section � we prove that it yields near
optimal reward in polynomial time� We conclude in
Section ��

�� Preliminaries

We present R�max in the context of a model that is called a stochastic game� This model
is more general than a Markov decision process because it does not necessarily assume that
the environment acts stochastically �although it can	� In what follows we de�ne the basic
model� describe the set of assumptions under which our algorithm operates� and de�ne the
parameters in�uencing its running time�

��� Stochastic Games

A game is a model of multi
agent interaction� In a game� we have a set of players� each
of whom chooses some action to perform from a given set of actions� As a result of the
players� combined choices� some outcome is obtained which is described numerically in the
form of a payo� vector� i�e�� a vector of values� one for each of the players� We concentrate
on two
player� �xed
sum games �i�e�� games in which the sum of values in the payo� vector
is constant	� We refer to the player under our control as the agent� whereas the other player
will be called the adversary�

A common description of a game is as a matrix� This is called a game in strategic form�
The rows of the matrix correspond to the agent�s actions and the columns correspond to
the adversary�s actions� The entry in row i and column j in the game matrix contains the
rewards obtained by the agent and the adversary if the agent plays his ith action and the
adversary plays his jth action� We make the simplifying assumption that the size of the
action set of both the agent and the adversary is identical� However� an extension to sets
of di�erent sizes is trivial�

In a stochastic game �SG	 the players play a �possibly in�nite	 sequence of standard
games from some given set of games� After playing each game� the players receive the
appropriate payo�� as dictated by that game�s matrix� and move to a new game� The
identity of this new game depends� stochastically� on the previous game and on the players�
actions in that previous game� Formally�
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De�nition � A �xed
sum� two player� stochastic
game �SG� M on states S � f�� � � � � Ng�
and actions A � fa�� � � � � akg� consists of�

� Stage Games� each state s � S is associated with a two�player� �xed�sum game in
strategic form� where the action set of each player is A� We use Ri to denote the
reward matrix associated with stage�game i�

� Probabilistic Transition Function� PM �s� t� a� a�	 is the probability of a transition
from state s to state t given that the �rst player �the agent� plays a and the second
player �the adversary� plays a��

An SG is similar to an MDP� In both models� actions lead to transitions between states
of the world� The main di�erence is that in an MDP the transition depends on the action
of a single agent whereas in an SG the transition depends on a joint
action of the agent and
the adversary� In addition� in an SG� the reward obtained by the agent for performing an
action depends on its action and the action of the adversary� To model this� we associate a
game with every state� Therefore� we shall use the terms state and game interchangeably�

Stochastic games are useful not only in multi
agent contexts� They can be used in

stead of MDPs when we do not wish to model the environment �or certain aspects of it	
stochastically� In that case� we can view the environment as an agent that can choose
among di�erent alternatives� without assuming that its choice is based on some probability
distribution� This leads to behavior maximizing the worst
case scenario� In addition� the
adversaries that the agent meets in each of the stage
games could be di�erent entities�

R�max is formulated as an algorithm for learning in Stochastic Games� However� it is
immediately applicable to �xed
sum repeated games and to MDPs because both of these
models are degenerate forms of SGs� A repeated game is an SG with a single state and an
MDP is an SG in which the adversary has a single action at each state�

For ease of exposition we normalize both players� payo�s in each stage game to be non

negative reals between � and some constant Rmax� We also take the number of actions to
be constant� The set of possible histories of length t is �S�A�	t�S� and the set of possible
histories� H � is the union of the sets of possible histories for all t � �� where the set of
possible histories of length � is S�

Given an SG� a policy for the agent is a mapping fromH to the set of possible probability
distributions over A� Hence� a policy determines the probability of choosing each particular
action for each possible history�

We de�ne the value of a policy using the average expected reward criterion as follows�
Given an SG M and a natural number T � we denote the expected T 
step undiscounted
average reward of a policy � when the adversary follows a policy �� and where both � and
� are executed starting from a state s � S� by UM �s� �� �� T 	 �we omit subscripts denoting
the SG when this causes no confusion	� Let UM �s� �� T 	 � min� is a policy UM �s� �� �� T 	
denote the value that a policy � can guarantee in T steps starting from s� We de�ne
UM �s� �	 � lim infT��UM �s� �� T 	� Finally� we de�ne UM��	 � mins�S UM �s� �	��

�� We discuss this choice below�
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��� Assumptions� Complexity and Optimality

We make two central assumptions� First� we assume that the agent always recognizes
the identity of the state �or stage
game	 it reached �but not its associated payo�s and
transition probabilities	 and that after playing a game� it knows what actions were taken
by its adversary and what payo�s were obtained� Second� we assume that the maximal
possible reward Rmax is known ahead of time� This latter assumption can be removed��

Next� we wish to discuss the central parameter in the analysis of the complexity of R�
max � the mixing time� �rst identi�ed by Kearns and Singh �����	� Kearns and Singh argue
that it is unreasonable to refer to the eciency of learning algorithms without referring to
the eciency of convergence to a desired value� They de�ned the �
return mixing time of
a policy � to be the smallest value of T after which � guarantees an expected payo� of at
least U��	 � �� In our case� we have to take into account the existence of an adversary�
Therefore� we adjust this de�nition slightly as follows� a policy � belongs to the set ���� T 	
of policies whose �
return mixing time is at most T � if for any starting state s and for any
adversary behavior �� we have that U�s� �� �� T 	� U��	� ��

That is� if a policy pi � ���� T 	 then no matter what the initial state is and what the
adversary does� the policy � will yield in any t � T steps an expected average reward
that is � close to its value� The �
return mixing time of a policy � is the smallest T for
which pi � ���� T 	� Notice that this means that an agent with perfect information about
the nature of the games and the transition function will require at least T steps� on the
average� to obtain an optimal value using an optimal policy � whose �
return mixing time
is T � Clearly� one cannot expect an agent lacking this information to perform better�

We denote by Opt����� T 		 the optimal expected T 
step undiscounted average return
from among the policies in ���� T 	� When looking for an optimal policy �with respect to
policies that mix at time T � for a given � � �	� we will be interested in approaching this
value in time polynomial in T � in ���� in ��� �where � and � are the desired error bounds	�
and in the size of the description of the game�

The reader may have noticed that we de�ned UM ��	 as mins�S UM �s� �	� It may appear
that this choice makes the learning task too easy� For instance� one may ask why shouldn�t
we try to attain the maximal value over all possible states� or at least the value of our initial
state� We claim that the above is the only reasonable choice� and that it leads to results
that are as strong as previous algorithms�

To understand this point� consider the following situation� we start learning at some
state s in which the optimal action is a� If we do not execute the action a in s� we reach
some state s� that has a very low value� A learning algorithm without any prior knowledge
cannot be expected to immediately guess that a should be done in s� In fact� without such
prior knowledge� it cannot conclude that a is a good action unless it tries the other actions
in s and compares their outcome to that of a� Thus� one can expect an agent to learn a
near
optimal policy only if the agent can visit state s suciently many times to learn about
the consequences of di�erent options in s� In a �nite SG� there will be some set of states
that we can sample suciently many times� and it is for such states that we can learn to
behave�

�� We would need to run the algorithm repeatedly for increasing values of Rmax� The resulting algorithm

remains polynomials in the relevant parameters�
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In fact� it probably makes sense to restrict our attention to a subset of the states such
that from each state in this set it is not too hard to get to any other state� In the context of
MDPs� Kearns and Singh refer to this as the ergodicity assumption� In the context of SGs�
Ho�man and Karp �����	 refer to this as the irreducibility assumption� An SG is said to be
irreducible if the Markov
chain obtained by �xing any two �pure	 stationary strategies for
each of the players is irreducible �i�e�� each state is reachable from each other state	� In the
special case of an MDP� irreducibility is precisely the ergodicity property used by Kearns
and Singh in their analysis of E��

Irreducible SGs have a number of nice properties� as shown by �Ho�man � Karp� ����	�
First� the maximal long
term average reward is independent of the starting state� implying
that max� mins�S UM�s� �	 � max� maxs�S UM �s� �	� Second� this optimal value can be
obtained by a stationary policy �i�e�� one that depends on the current stage
game only	�
Thus� although we are not restricting ourselves to irreducible games� we believe that our
results are primarily interesting in this class of games�

�� The R�max algorithm

Recall that we consider a stochastic game M consisting of a set S � fG�� � � � � GNg of stage

games in each of which both the agent and the adversary have a set A � fa�� � � � � akg of
possible actions� We associate a reward matrix Ri with each game� and use Ri

m�l to denote a
pair consisting of the reward obtained by the agent and the adversary after playing actions
am and al in game Gi� respectively� In addition� we have a probabilistic transition function�
PM � such that PM�s� t� a� a�	 is the probability of making a transition from Gs to Gt given
that the agent played a and the adversary played a�� It is convenient to think of PM �i� �� a� a�	
as a function associated with the entry �a� a�	 in the stage
game Gi� This way� all model
parameters� both rewards and transitions� are associated with joint actions of a particular
game� Let � � �� For ease of exposition� we assume throughout most of the analysis that
the �
return mixing time of the optimal policy� T � is known� Later� we show how this
assumption can be relaxed�

The R�max algorithm is de�ned as follows�

Initialize� Construct the following modelM � consisting ofN�� stage
games� fG�� G�� � � � � GNg�
and k actions� fa�� � � � � akg� Here� G�� � � � � GN correspond to the real games� fa�� � � � � akg
correspond to the real actions� and G� is an additional �ctitious game� Initialize all
game matrices to have �Rmax� �	 in all entries�� Initialize PM �Gi� G�� a� a

�	 � � for all
i � �� � � � � N and for all actions a� a��

In addition� maintain the following information for each entry in each gameG�� � � � � GN �
��	 a boolean value known�unknown� initialized to unknown� ��	 the states reached
by playing the joint action corresponding to this entry �and how many times	� ��	 the
reward obtained �by both players	 when playing the joint action corresponding to this
entry� Items � and � are initially empty�

Repeat�

	� The value � given to the adversary does not play an important role here�
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Compute and Act� Compute an optimal T 
step policy for the current state� and
execute it for T 
steps or until a new entry becomes known�

Observe and update� Following each joint action do as follows� Let a be the action
you performed in Gi and let a� be the adversary�s action�

� If the joint aqction �a� a�	 is performed for the �rst time in Gi� update the
reward associated with �a� a�	 in Gi� as observed�

� Update the set of states reached by playing �a� a�	 in Gi�

� If at this point your record of states reached from this entry contains
K� � max��d�NTRmax

� 	�e� d��ln�� �
�Nk�

	e	 � � elements� mark this entry as
known� and update the transition probabilities for this entry according to
the observed frequencies�

As can be seen� R�max is quite simple� It starts with an initial estimate for the model
parameters that assumes all states and all joint actions yield maximal reward and lead
with probability � to the �ctitious stage
game G�� Based on the current model� an optimal
policy is computed and followed� Following each joint action the agent arrives at a new
stage
game� and this transition is recorded in the appropriate place� Once we have enough
information about where some joint action leads to from some stage
game� we update the
entries associated with this stage
game and this joint action in our model� After each model
update� we recompute an optimal policy and repeat the above steps�

�� Optimality and Convergence

In this section we provide the tools that ultimately lead to the proof of the following theorem�

Theorem � Let M be an SG with N states and k actions� Let � � � � �� and � � � be
constants� Denote the policies for M whose ��return mixing time is T by �M ��� T 	� and
denote the optimal expected return achievable by such policies by Opt��M��� T 		� Then�
with probability of no less than �� � the R�max algorithm will attain an expected return of
OptM ����� T 		� �� within a number of steps polynomial in N� k� T� �

�
� and �

�
�

In the main lemma required for proving this theorem we show the following� if the agent
follows a policy that is optimal with respect to the model it maintains for T steps� it will
either attain near
optimal average reward� as desired� or it will update its statistics for
one of the unknown slots with suciently high probability� This can be called the implicit
explore or exploit property of R�max� The agent does not know ahead of time whether it is
exploring or exploiting � this depends in a large part on the adversary�s behavior which it
cannot control or predict� However� it knows that it does one or the other� no matter what
the adversary does� Using this result we can proceed as follows� As we will show� the number
of samples required to mark a slot as known is polynomial in the problem parameters� and
so is the total number of entries� Therefore� the number of T 
step iterations in which non

optimal reward is obtained is bounded by some polynomial function of the input parameters�
say T �� This implies that by performing T 
step iterations D � T �Rmax�	 times� we get that
the loss obtained by non
optimal execution �where exploration is performed	� is bounded
by 	� for any � � 	 � ��
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Before proving our main lemma we state and prove an extension of Kearns and Singh�s
Simulation Lemma �Kearns � Singh� ����	 to the context of SGs with a slightly improved
bound�

De�nition � Let M and  M be SGs over the same state and action spaces� We say that
 M is an 
�approximation of M if for every state s we have�

�� If PM �s� t� a� a�	 and P �M �s� t� a� a�	 are the probabilities of transition from state s to
state t given that the joint action carried out by the agent and the adversary is �a� a�	�
in M and  M respectively� then� PM �s� t� a� a�	�
 � P �M �s� t� a� a�	 � PM�s� t� a� a�	�


	� For every state s� the same stage�game is associated with s in  M and in M �

Lemma � Let M and  M be SGs over N states� where  M is an �
NTRmax

�approximation of
M � then for every state s� agent policy �� and adversary policy �� we have that

jU �M�s� �� �� T	� UM�s� �� �� T 	j � ��

Proof� When we �x both players� policies we get� both in MDPs and in general SGs� a
probability distribution over T 
step paths in the state space� This is not a Markov process
because the player�s policies can be non
stationary� However� the transition probabilities at
each point depend on the current state and the actions taken and the probability of each
path is a product of the probability of each of the transitions� This is true whether the
policies are pure or mixed�

We need to prove that�
X

p

jPr
M
�p	UM�p	� Pr

�M
�p	U �M�p	j � �

where p is a T 
step path starting at s� PrM�p	 �respectively� Pr �M�p		 is its probability in the
random process induced by M �resp� by  M	� �� and �� and UM �p	� �U �M�p		 is the average
payo� along this path� Because the average payo� is bound by Rmax we have�

X

p

jPr
M
�p	UM�p	� Pr

�M
�p	U �M�p	j �

X

p

jPr
M
�p	� Pr

�M
�p	jRmax�

To conclude our proof� it is sucient to show that
X

p

jPr
M
�p	� Pr

�M
�p	j � ��Rmax

Let hi de�ne the following random processes� start at state s and follow policies � and
� � for the �rst i steps� the transition probabilities are identical to the process de�ned above
on  M � and for the rest of the steps its transition probabilities are identical to M � Clearly�
when we come to assess the probabilities of T 
step path� we have that h� is identical to
the original process on M � whereas hT is identical to original process on  M � The triangle
inequality implies that

X

p

jPr
M
�p	� Pr

�M
�p	j �

X

p

jPr
h�
�p	� Pr

hT
�p	j �

T��X

i��

X

p

jPr
hi
�p	� Pr

hi��
�p	j
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If we show that for any � � i � T we have that
P

p jPrhi�p	�Prhi���p	j � ��TRmax� it will
follow that

P
p jPrM�p	� Pr �M�p	j � ��Rmax� which is precisely what we need to show�

We are left with the burden of proving that
P

p jPrhi�p	�Prhi���p	j � ��TRmax� We can
sum over all path p as follows� �rst we sum over the N possible states that can be reached
in i steps� Then we sum over all possible path pre�xes that reach each such state� Next�
we sum over all possible states reached after step i� �� and �nally over all possible suxes
that start from each such state� Now� we note that the probability of each particular path
p is the product of the probability of its particular pre�x� the probability of a transition
from xi to xi��� and the probability of the sux� We will use xi to denote the state reached
after i steps� xi�� to denote the state reached after i� � steps� pre�xi	 to denote the i
step
pre�xes reaching xi� and suf�xj	 to denote the suxes starting at xj � Thus�

X

p

jPr
hi
�p	� Pr

hi��
�p	j �

X

xi

X

pre	xi


X

xi��

X

suf	xi��


j�Pr
hi
�pre�xi		 Pr

hi
�xi � xi��	 Pr

hi
�suf�xi��			�

� Pr
hi��

�pre�xi		 Pr
hi��

�xi � xi��	 Pr
hi��

�suf�xi��			j

However� the pre�x and sux probabilities are identical in hi and hi��� Thus� this sum is
equal to

X

xi

X

pre	xi


X

xi��

X

suf	xi��


Pr
hi
�pre�xi		 Pr

hi
�suf�xi��		jPr

hi
�xi � xi��	� Pr

hi��
�xi � xi��	j �

X

xi

X

pre	xi


Pr
hi
�pre�xi		

X

xi��

X

suf	xi��


Pr
hi
�suf�xi��		jPr

hi
�xi � xi��	� Pr

hi��
�xi � xi��	j �

�
X

xi

X

pre	xi


Pr
hi
�pre�xi		��

X

xi��

X

suf	xi��


Pr
hi
�suf�xi��		��NTRmax�

This last expression is a product of two independent terms� The �rst term is the sum
over all possible i
step pre�xes �i�e�� overall all pre�xes starting in the given x� and ending
in xi� for any xi	� Hence� it is equal to �� The second term is a sum over all suxes starting
at xi��� for any value of xi��� For any given value of xi�� the probability of any sux
starting at this value is �� Summing over all possible values of xi��� we get a value of N �

Thus�

X

p

jPr
hi
�p	� Pr

hi��
�p	j � � � ��NTRmax �N

This concludes our proof�

Next� we de�ne the notion of an induced SG� The de�nition is similar to the de�nition
of an induced MDP given in �Kearns � Singh� ����	 except for the use of R�max� The
induced SG is the model used by the agent to determine its policy�

De�nition � Let M be an SG� Let L be the set of entries �Gi� a� a
�	 marked unknown�

That is� if �Gi� a� a
�	 � L then the entry corresponding to the joint action �a� a�	 in the

stage�game Gi is marked as unknown� De�ne ML to be the following SG� ML is identical
to M � except that ML contains an additional state G�� Transitions and rewards associated

�
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with all entries in ML which are not in L are identical to those in M � For any entry in L

or in G�� the transitions are with probability � to G�� and the reward is Rmax for the agent
and 
 for the adversary�

Given an SG M with a set L of unknown states� RML
max denotes the optimal policy
for the induced SG ML� When ML is clear from the context we will simply use the term
R�max policy instead of RML
max policy�

We now state and prove the implicit explore or exploit lemma�

Lemma � Let M be an SG� let L and ML be as above� Let � be an arbitrary policy for
the adversary� let s be some state� and let � � 
 � �� Then either ��� jOpt��M��� T 		 �
VR�maxj � 
� where VR�max is the expected T �step average reward for the RML�max policy
on M � or �	� An unknown entry will be played in the course of running R�max on M for
T steps with a probability of at least �

Rmax
�

In practice� we cannot determine �� the adversary�s policy� ahead of time� Thus� we
do not know whether R
max will attain near
optimal reward or whether it will reach an
unknown entry with sucient probability� The crucial point is that it will do one or the
other� no matter what the adversary does�

Proof� First� notice that the value of R�max in ML will be no less than the value of
the optimal policy in M � This follows from the fact that the reward for the agent is at least
as large as in M � and that the R
max policy is optimal with respect to ML�

In order to prove the claim� we will show that the di�erence between the reward obtained
by the agent in M and in ML when R�max is played is smaller than the exploration
probability times Rmax� This will imply that if the exploration probability is small� then
R�max will attain near
optimal payo�� Conversely� if near
optimal payo� is not attained�
the exploration probability will be suciently large�

For any policy� we may write�

UM�s� �� �� T 	 �
X

p

Pr��sM �p�UM�p	 �
X

q

Pr��sM �q�UM�q	 �
X

r

Pr��sM �r�UM�r	

where the sums are over� respectively� all T 
paths p in M � all T 
paths q in M such that
every entry visited in q is not in L� and all T 
path r in M in which at least one entry visited
is in L� Hence�

jUM�s�R
max� �� T 	�UML
�s�R
max� �� T 	j� j

X

p

Pr
R
max���s
M �p�UM�p	�

X

p

Pr
R
max���s
ML

�p�UML
�p	j

� j
X

q

PrR
max���s
M �q�UM�q	�

X

r

PrR
max���s
M �r�UM�r	�

X

q

PrR
max���s
ML

�q�UML
�q	�
X

r

PrR
max���s
ML

�r�UML
�r	j

� j
X

q

Pr
R
max���s
M �q�UM�q	�

X

q

Pr
R
max���s
ML

�q�UML
�q	j �

j
X

r

PrR
max���s
M �r�UM�r	�

X

r

PrR
max���s
ML

�r�UML
�r	j
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The �rst di�erence�

j
X

q

PrR
max���s
M �q�UM�q	�

X

q

PrR
max���s
ML

�q�UML
�q	j

must be �� This follows from the fact that in M and in ML� the rewards obtained in a path
which do not visit an unknown entry are identical� The probability of each such path is
identical as well�

Hence� we have�

jUM�s�R
max� �� T 	�UML
�s�R
max� �� T 	j � j

X

r

PrR
max���s
M �r�UM�r	�

X

r

PrR
max���s
ML

�r�UML
�r	j

�
X

r

PrR
max���s
M �r�Rmax

This last inequality stems from the fact that the average reward in any path is no greater
than Rmax and no smaller than � and the fact that we can appropriately associate di�erent
paths within these models with equal probabilities�

The last term is the probability of reaching an unknown entry multiplied by Rmax� If
this probability is less than �

Rmax
then

jUM �s�R
max� �� T 	� UML
�s�R
max� �� T 	j � 


Denote by �� an optimal T 
step policy� and let UM�s� �� T 	 be its value� �Note that this
value is independent of the adversary strategy �� as �� guarantees at least this value for
every adversary behavior�	 If UM�s�R
max� �� T 	� UM�s� �� T 	 we are done� Suppose that
UM �s�R
max� �� T 	 � UM�s� �� T 	� We know that UML

�s�R
max� �� T 	 � UM�s� �� T 	 is no
lesser than the optimal T step average reward for M � Therefore� we have that

jUM�s� �� T 	� UM �s�R
max� �� T 	j� UM�s� �� T 	� UM�s�R
max� �� T 	

� UML
�s�R
max� �� T 	� UM�s�R
max� �� T 	� 


We are now ready to prove Theorem �� First� we wish to show that the expected average
reward is as stated� We must consider three models� M � the real model� M �

L the actual
model used� and M � where M � is an ���NTRmax
approximation of M such that the SG
induced by M � and L is M �

L� At each T 
step iteration of our algorithm we can apply the
Implicit Explore or Exploit Lemma to M � and M �

L for the set L applicable at that stage�
Hence� at each step either the current R
max policy leads to an average reward that is
��� close to optimal with respect to the adversary�s behavior and the model M � or it leads
to an ecient learning policy with respect to the same model� However� because M � is
an ���
approximation of M � the simulation lemma guarantees that the policy generated is
either � close to optimal or explores eciently� We know that the number of T 
step phases
in which we are exploring can be bounded polynomially� This follows from the fact that we
have a polynomial number of parameters to learn �in N and k	 and that the probability
that we obtain a new� useful statistic is polynomial in �� T and N � Thus� if we choose a

��
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large enough �but still polynomial	 number of T 
step phases� we shall guarantee that our
average reward is as close to optimal as we wish�

The above analysis was done assuming we actually obtain the expected value of each
random variable� This cannot be guaranteed with probability �� Yet� we can ensure that
the probability that the algorithm fails to attain the expected value of certain parameters
be small enough by sampling it a larger �though still polynomial	 number of time� This is
based on the well
known Cherno� bound� Using this technique one can show that when the
variance of some random variable is bounded� we can ensure that we get near its average
with probability �� � by using a suciently large sample that is polynomial in ����

In our algorithm� there are three reasons why the algorithm could fail to provided the
agent with near optimal return in polynomial time�

�� First� we have to guarantee that our estimates of the transition probabilities for every
slot are suciently accurate� Recall that to ensure a loss of no more than ��� our
estimates must be within �

�NTRmax
of the real probabilities�

Consider a set of trials� where the joint action �a� a�	 is performed in state s� Consider
the probability of moving from state s to state t given the joint
action �a� a�	 in a
given trial� and denote it by p� Notice that there are Nk� such probabilities �one
for each game and pair of agent
adversary actions	� Therefore� we would like to
show that the probability of failure in estimating p is less than �

�Nk�
� Let Xi be an

indicator random variable� that is � i� we moved to state t when we were in state s
and selected an action a in trial i� Let Zi � Xi � p� Then E�Zi	 � �� and jZij � ��

Then� Cherno� bound implies that �for any K�	 Prob�!
K�

i��Zi � K�
�

� 	 � e
�K�

�
�

� � This

implies that Prob�
�
K�
i��

Xi

K�
�p � K�

�
�

� 	 � e
�K�

�
�

� � Similarly� we can de�ne Z�i � p�Xi�

and get by Cherno� bound that Prob�!K�

i��Z
�

i � K�
�

� 	 � e
�K�

�
�

� � This implies that

Prob�p�
�
K�
i��

Xi

K�
� K�

�
�

� 	 � e
�K�

�
�

� � Hence� we get that Prob�j
�
K�
i��

Xi

K�
�pj � K�

�
�

� 	 �

�e
�K�

�
�

� �

We now choose K� such thatK�
�
�

� � �
�NTRmax

� and �e
�K�

�
�

� � �
�Nk�

� This is obtained

by taking K� � max���NTRmax

�

	����ln�� �
�Nk�

		 � ��

The above guarantees that if we sample each slot K� times the probability that our
estimate of the transition probability will be outside our desired bound is less than �

� �

Using the pigeon
hole principle we know that total number of visits to slots marked
unknown is Nk�K�� After at most this number of visits all slots will be marked
known�

�� The Implicit Exploit or Explore Lemma gives a probability of �
Rmax

of getting to
explore� We now wish to show that after K� attempts to explore �i�e� when we do not
exploit	� we obtain the K� required visits� Let Xi be an indicator random variable
which is � if we reach to the exploration state �G� in Lemma �	 when we do not exploit�
and � otherwise� Let Zi � Xi �

�
Rmax

� and let Z�i �
�

Rmax
� Xi� and apply Cherno�

��
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bound on the sum of Zi�s and Z�is as before� We get that Prob�j!K�

i��Xi �
K��
Rmax

j �

K
�

�

� 	 � �e
�K�

�
�

� � We can now choose K� such that K
�

�

� � K�
�

Rmax
� k�NK� and

�e
�K�

�
�

� � �
�k�N to guarantee that we will have a failure probability of less than �

� due
to this reason�

�� When we perform a T 
step iteration without learning our expected return is Opt��M�T� �		�
�� However� the actual return may be lower� This point is handled by the fact that
after polynomially many local exploitations are carried out� Opt��M�T� �		� �

�� can

be obtained with a probability of failure of at most �
� � This is obtained by standard

Cherno� bounds� and makes use of the fact that the standard deviation of the ex

pected reward in a T 
step policy is bounded because the maximal reward is bounded
by Rmax� More speci�cally� consider z � MNT exploitation stages for some M � ��
Denote the average return in an exploitation stage by �� and let Xi denote the return
in the i
th exploitation stage �� � i � z	� Let Yi � ��Xi

Rmax
� Notice that jYij � ��

and that E�Yi	 � �� Cherno� bound implies that� Prob�!z
j��Yj � z

�

� 	 � e
�z

�
�

�

This implies that the average return along z iterations is at most Rmax

z
�
�

lower than

� with probability of at least e
�z

�
�

� � By choosing M such that z � ��Rmax
�

	�� and

z � ��ln� ��		
��� we get the desired result� with probability less than �

� the value
obtained will not be more than �

� lower than the expected value�

By making the failure probability less than �
� for each of the above stages� we are able

to obtain a total failure probability of no more than ��
From the proof� we can also observe the bounds on running times required to obtain

this result� However� notice that in practice� the only bound that we need to consider when
implementing the algorithm is the sample size K��

To remove the assumptions that the �
return mixing time is known� we proceed as in
�Kearns � Singh� ����	� From the proof of the algorithm we deduced some polynomial
P in the problem parameters such that if T is the mixing
time� then after P �T 	 steps we
are guaranteed� with probability �� �� the desired return� We repeat the execution of the
algorithm for all values of T � �� �� �� � � �� each time performing P �T 	 steps� Suppose that
T� is the mixing time� then after

PT�
i�� P �i	 � O�P �T�	�	 steps� we will obtain the desired

return�

Notice that the R
max algorithm does not have a �nal halting time and will be applied
continuously as long as the agent is functioning in its environment� The only caveat is that
at some point our current mixing time candidate T will be exponential in the actual mixing
time T�� at which point each step of the algorithm will require an exponential calculation�
However� this will occur only after an exponential number of steps� This is true for the E�

algorithm too�
Another point worth noting is that the agent may never know the values of some of

the slots in the game because of the adversary�s choices� Consequently� if � is the optimal
policy given full information about the game� the agent may actually converge to a policy ��

that di�ers from �� but which yields the best return given the adversary�s actual behavior�

��
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This return will be no smaller than the return guaranteed by �� The mixing time of �� will�
in general� di�er from the mixing time of �� However� we are guaranteed that if T� is the
�
return mixing time of �� and v is its value� after time polynomial in T�� the agent�s actual
return will be at least v �subject to the deviations a�orded by the theorem	�

��� Repeated Games

A stochastic game in which the set of stage games contains a single game is called a repeated
game� This is an important model in game theory and a lot of work has been devoted to
the study of learning in repeated games �Fudenberg � Levine� ����	� There is large class of
learning problems associated with repeated games� and the problem as a whole is referred to
as repeated games with incomplete information �Aumann � Maschler� ����	� The particular
class of repeated games with incomplete information we are using �i�e�� where the agent gets
to observe the adversary�s actions and the payo�s� and it knows the value of Rmax	 is known
as an Adaptive Competitive Decision Process and has been studied� e�g�� by Banos �Banos�
����	 and Megiddo �Megiddo� ����	�

Because a repeated game contains a single stage game� there are no transition proba

bilities to learn� However� there is still the task of learning to play optimally� In addition�
because there is only a single stage game� the mixing time of any policy is � � because
the agent�s expected reward after playing a single stage
game is identical to the policy�s ex

pected reward� However� the time required to guarantee this expected reward could be much
larger� This stems from the fact that the optimal policy in a game is often mixed� That is�
the agent chooses probabilistically� and not deterministically� among di�erent options�

In repeated games� the R
max algorithm is slightly modi�ed� as we do not need to
maintain a �ctitious state and we need not maintain statistics on the frequency of various
transitions� We describe the precise algorithm below�

Initialization Initialize the game model with payo�s of Rmax for every joint action for the
agent and � for the adversary� Mark all joint actions as unknown�

Play Repeat the following process�

Policy Computation Compute an optimal policy for the game based on the current
model and play it�

Update If the joint action played is marked unknown� update the game matrix with
its observed payo�s and mark is known�

Given � � �� and � � � � �� we need to show that after polynomially many iterations
M � where M is polynomial in the number of entries in the game� �

�
� and �

�
� we obtain a

payo� that is at most � lower than the expected payo� of the optimal strategy in this game�
with probability of a least �� ��

First notice that the expected payo� at each stage� when we do not expose the value of
a new entry� is greater of equal to the expected payo� of the optimal strategy� By choosing
M � Q� � Q�� where Q� � k�Rmax�M � ��� we get that the loss due to learning of new
entries is bounded by �

� � Now� we need to guarantee that after Q� executions �where Q�

is polynomial in the problem parameters	 of a policy with expected payo� greater or equal

��
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to r �where r is the expected payo� of the optimal policy in the original game	� our actual
payo� is at least r� ��� with probability of at least �� �� This follows from the arguments
presented in case � of the general proof for SGs�

�� Conclusion

We described R
max� a simple reinforcement learning algorithm that is guaranteed to lead to
polynomial time convergence to near
optimal average reward in zero
sum stochastic games�
In fact� R
max guarantees the safety level �probabilistic maximin	 value for the agent in
general non
cooperative stochastic games�

R
max is an optimistic model
based algorithm that formally justi�es the optimism in
the face of uncertainty bias� Its analysis is similar� in many respects� to Kearns and Singh�s
E� algorithm� However� unlike the E�� the agent does not need to explicitly contemplate
whether to explore or to exploit� In fact� the agent may never learn an optimal policy
for the game�� or it may play an optimal policy without knowing that it is optimal� The
�clever� aspect of the agent�s policy is that it �o�ers� a catch to the adversary� if the
adversary plays well� and leads the agent to low payo�s� then the agent will� with sucient
probability� learn something that will allow it to improve its policy� Eventually� without
too many �unpleasant� learning phases� the agent will have obtained enough information
to generate an optimal policy�

R
max can be applied to MDPs� repeated games� and SGs� In particular� all single

controller stochastic game instances covered in �Brafman � Tennenholtz� ����	 fall into this
category� and R
max can be applied to them� However� R
max is much simpler conceptually
and easier to implement than the LSG algorithm described there� Moreover� it also attains
higher payo�� In LSG the agent must pay an additional multiplicative factor  that does
not appear in R
max�

Two other SG learning algorithms appeared in the literature� Littman �Littman� ����	
describes a variant of Q
learning� called minimax Q
learning� designed for �
person zero

sum stochastic games� That paper presents experimental results� asymptotic convergence
results are presented in �Littman � Szepesvri� ����	� Hu and Wellman �Hu � Wellman�
����	 consider a more general framework of multi
agent general
sum games� This framework
is more general than the framework treated in this paper which dealt with �xed
sum� two

player games� Hu and Wellman based their algorithm on Q
learning as well� They prove
that their algorithm converges to the optimal value �de�ned� in their case� via the notion
of Nash equilibrium	� However� convergence is in the limit� i�e�� provided that every state
and every joint action has been visited in�nitely often� Note that an adversary can prevent
a learning agent from learning certain aspects of the game inde�nitely and that R
max�s
polynomial time convergence to optimal payo� is guaranteed even if certain states and joint
actions have never been encountered�

The class of repeated games is another sub
class of stochastic games for which R
max
is applicable� In repeated games� T � �� there are no transition probabilities to learn� and
we need not use a �ctitious stage
game� Therefore� a much simpler version of R
max can
be used� The resulting algorithm is much simpler and much more ecient than previous

� In a game� an agent need not play optimally to obtain an optimal reward because it may obtain this

reward because of bad choices by the adversary�

��
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algorithms by Megiddo �Megiddo� ����	 and by Banos �Banos� ����	� Moreover� for these
algorithms� only convergence in the limit is proven� A more recent algorithm by Hart and
Mas
Colell�Hart � Mas
Colell� ����	 features an algorithm that is much simpler than the
algorithms by Banos and Megiddo� Moreover� this algorithm is Hannan�Consistent which
means that it not only guarantees the agent its safety level� but it also guarantees that
the agent will obtain the maximal average reward given the actual strategy used by the
adversary� Hence� if the adversary plays sub
optimally� the agent can get an average reward
that is higher than its safety
level� However� it is only known that this algorithm converges
almost
surely� and its convergence rate is unknown� An interesting open problem is whether
a polynomial time hannan
consistent near
optimal algorithm exists for repeated games and
for stochastic games�
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ABSTRACT
We introduce a class of mechanisms, called bidding clubs,
for agents to coordinate their bidding in auctions. In a bid-
ding club agents first conduct a “pre-auction” within the
club; depending on the outcome of the pre-auction some
subset of the members of the club bid in the primary auction
in a prescribed way; and, in some cases, certain monetary
transfers take place after the auction. Bidding clubs have
self-enforcing collusion properties in the context of second-
price auctions. We show that this is still true when multiple
auctions take place for substitutable goods, as well as for
complementary goods. We also present a bidding club pro-
tocol for first-price auctions. Finally, we show cases where
bidding clubs have self-enforcing cooperation protocols in
arbitrary mechanisms.1

1. INTRODUCTION
With the exploding popularity of auctions on the Inter-

net and elsewhere has come increased interest in systems to
assist (software or human) agents bidding in such auctions.
Most of these systems have to date done little more than ag-
gregate information from multiple auctions and present it to
the user in a convenient fashion (e.g., www.auctionwatch.com).
There is now beginning to emerge a second generation of sys-
tems which actually provide bidding advice and automation
services to bidders, going beyond the familiar proxy-bidding
feature prevalent in online auctions to the realm of bona-fide
decision support.

This paper looks even beyond such systems, which are
geared towards assisting a single bidder, and presents a class
of systems to assist a collection of bidders, “bidding clubs”.
The idea is similar to the idea behind “buyer clubs” on the
Internet (e.g., www.merkata.com and www.mobshop.com),
namely to aggregate the market power of individual bidders.
The new twist is that whereas in a buyer club there is a per-
fect alignment of the various buyers’ interests (since there

1This work was partly supported by DARPA grant number
F30602-98-C-0214-P00005.
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the more buyers join in a purchase the lower the price for ev-
eryone), in a bidding club there is a more complex strategic
relationship among them, and the bidding club rules must
be designed accordingly.

Here’s a simple example. Consider an auction with a sin-
gle seller, and six potential buyers. Assume that three of
the potential buyers – A, B and C, with corresponding (se-
cret) valuations v1 > v2 > v3 – attempt to coordinate their
bidding. Assume the auction is a first-price auction. Un-
der well known assumptions from the auction literature, it
would be the interest of each bidder to bid exactly 5/6 of his
true value in the auction. Thus A would end up with a sur-
plus of v1/6 (if he wins the auction) or 0 (if he doesn’t), and
B and C with a surplus of 0. Is there some pre-agreement
A, B and C can make that will cause all of them to come
out of the auction at least as well off, and some of them
strictly better off? One could näıvely say that they would
each reveal their valuations to one another agreeing that
only the highest would go on to the auction; A would there-
fore be the one going on, and when he bids in the auction
he would bid lower than 5v1/6 (a bid of 3v1/4 will work,
given the above-mentioned assumptions), and thus increase
his expected surplus. The obvious flaw in this mechanism
is that A, B and C will have incentive to lie in this initial
phase; this could still be true if A were obliged to pay B
and C a certain amount if they sat it out and he won the
auction.

The above protocol is a simple instance of the class bidding
clubs. In general, given some primary mechanism (typically,
an auction), a bidding club protocol is as follows:

1. Some set of bidders are invited to join the bidding
club, and informed of its rules. The other bidders are
not made aware of the existence of the bidding club;
we assume here that they are not even aware of the
possibility of its existence.

2. The bidders have the freedom to join the club or not.
If they do it is assumed that they are guaranteed to
follow its rules.2

3. The bidding-club coordinator (or simply ‘coordinator’)
asks the members for certain private information, such
as their valuations for the good that is being sold. No-
tice that in general bidders may cheat about their val-
uations.

2In practice, we will design bidding clubs in such a way that
any agent who would want to participate in the main auction
will want to join the bidding club.
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4. The coordinator determines, according to pre-specified
rules, how the members should behave in the primary
mechanism based on the information they all supply.

5. The coordinator may also determine (and enforce) ad-
ditional monetary transfers of the club members, based
on the results of the main mechanism.

6. The coordinator acts only as a representative of bid-
ders.

It may seem natural to ask why a coordinator should be
willing and/or able to function as a trusted third party,
without attention having been paid to its own incentives.
We believe that it is best not to see the coordinator as a
party (with interests of its own) at all; rather, we conceive
of a coordinator as a software agent which is able to act
only according to its (commonly-known) programming. It
is therefore possible for the coordinator to act reliably—
and for agents to be confident that the coordinator will act
reliably—even in cases where the coordinator stands to gain
nothing through its efforts. We do assume that coordina-
tors should not cost money to operate—all of our coordina-
tors are budget-balanced except for one that (unavoidably!)
makes money. Finally, we have often been asked about the
legal issues surrounding the use of bidding clubs. While this
is an interesting and pertinent question, it exceeds both our
expertise and the scope of this paper.

It turns out that, while the simple mechanism outlined
earlier fails, a more sophisticated one will ensure that B and
C do not participate in the primary auction, and that A
is therefore assured higher expected payoff in the auction.
More generally, the contributions of this paper are as follows:

1. We present a protocol for self-enforcing cooperation in
second-price auctions for substitute goods.

2. We present a protocol for self-enforcing cooperation in
second-price auctions for complementary goods.

3. We present a protocol for self-enforcing collusion in
first-price (as well as Dutch) auctions, in which only
some of the agents coordinate their activities, and which
does not make any use of monetary transfers.

4. We present a protocol for self-enforcing cooperation
in general auctions and economic mechanisms, when
the agents’ types (e.g. valuations for goods) are taken
from a finite set.

2. TECHNICAL BACKGROUND
The strategic interaction among self-interested agents is

a primary topic of study in microeconomics [4] and game
theory [1]. In particular, the design of protocols for strategic
interactions is the subject of the field termed mechanism
design [1]. The role of a mechanism (in particular, auction)
designer is to define a game whose equilibrium strategies
are desirable in some respect or another. Thus, the design
of a bidding club consists of taking a given mechanism – the
primary auction – and turning it into a more elaborate one,
namely one with an added first stage in which a subset of the
players play in some newly-designed game (as well as some
additional rules regarding behavior in the primary auction
and possible side payments after the auction).

Research on strategic aspects of multi-agent activity in
Artificial Intelligence has grown rapidly in the recent years.
This work has concentrated on the design of protocols for
agents’ interaction [7, 3, 9], and shares much in common
with work on mechanism design in economics. Many princi-
ples and ideas grew up from the mechanism design literature,
and have been adapted to the AI context.

Although the study of deals among agents has received
much attention in the AI literature (see e.g. [7]), and al-
though the study and design of contracts is central to infor-
mation economics [4] (and received much attention in the
recent AI literature [8]), the literature on cooperation un-
der incomplete information in auctions and trades is quite
limited. In particular, the literature on collusion in auctions
is somewhat spotty. It is still too broad to give a complete
overview of it, and the bulk of it is informal. In the formal
literature on the topic, the results are quite specific, and
certainly do not apply in settings of parallel auctions (with
either substitutability or complementarity among goods),
first-price auctions without side-payments, and general mech-
anisms, which are the focus of our technical results. The
closest result from the literature of which we are aware is
by Graham and Marshall [2], who present a protocol for
self-enforcing collusion by a subset of the participants of a
(single-good) second-price auction. We discuss this result
below. Additional related study of collusion in auctions can
be found in [5].

3. AUCTION PRELIMINARIES
We now present some preliminaries of auction theory, as

well as a description of the classical auction model discussed
in the paper and our parallel auction model.

3.1 Single auctions
An auction procedure for selling a single good to one of

n potential participants, N = {1, 2, . . . , n} is characterized
by 4 parameters, M, g, c, d: M is the set of possible mes-
sages a participant may submit; g = (g1, g2, . . . , gn), gi :
Mn → [0, 1], is an allocation function, where gi determines
the probability the winner of the auction will be agent i;
c : Mn → R determines the payment by the winner of the
auction; d is a participation fee. It is assumed that agents
may decide not to participate in an auction.

In order to analyze auctions we have to discuss the infor-
mation available to the participants. We assume the inde-
pendent private values model, with no externalities. Each
agent i is assumed to have a valuation vi selected from the
interval of real numbers [0, 1] or from a finite domain, which
captures its maximal willingness to pay for the good. We
further assume that this valuation is selected from the uni-
form distribution on the interval [0, 1] or on a finite domain.
For ease of presentation we will assume the continuous case,
excluding the section on general mechanisms, where the as-
sumption that the set of possible valuations is finite is re-
quired for our result. If agent i obtains the good and is asked
to pay p, as well as a participation fee d, then its utility, ui,
is given by vi − p − d; otherwise, if it is not assigned any
good then its utility is −d; if the agent does not participate
in the auction then its utility is 0.

The above defines a Bayesian game, where a strategy for
an agent is a decision about the message to be sent given its
valuation, and the payoffs are determined as above. The so-
lution of this game is given by computing a (Bayesian Nash)
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equilibrium of it: a joint strategy of the agents such that it
is irrational for each agent to deviate from its strategy, given
that all of the other agents stick to their strategy. Given an
equilibrium strategy b = (b1, b2, . . . , bn), one can compute
Li(b), the expected utility of agent i in equilibrium of the
corresponding game. In a case where there is more than
one equilibrium Li(b) is taken as the lowest expected util-
ity over all the equilibria. Further discussion of equilibrium
uniqueness is omitted from this paper.

One of the best-known auction mechanisms is the second-
price auction. In such an auction, each participant submits
a bid in a sealed envelope. The agent with the highest bid
wins the good and pays the amount of the second-highest
bid, and all other participants pay nothing. In a case of a tie,
the winner of the auction is selected randomly, with uniform
probability. If there is no participation fee then participation
in second-price auctions is always rational. Truth revealing,
i.e. bi(vi) = vi, is an equilibrium of the second-price auc-
tion (in fact, it is an equilibrium in dominant strategies).
Another popular auction is the first-price auction. These
auctions are conducted similarly to second-price auctions,
except that the winner pays the amount of his own bid. The
equilibrium analysis of first-price auctions is quite standard.
For example, if valuations are selected according to the uni-
form distribution on [0, 1] and there is no participation fee,
then the strategy of agent i in equilibrium is bi(vi) = n−1

n
vi.

3.2 Parallel auctions
More generally, several auctions may be conducted in par-

allel. We first consider the case of two parallel auctions of
similar goods. A parallel auction is given in this case by
a pair A = (A1, A2), where Ai = 〈N, g, c, d〉, (i = 1, 2) as
before.

One such problem is a parallel auction for substitute goods,
in which the set of possible buyers N is shared among A1 and
A2, and each agent’s valuation for the pair of goods {g1, g2}
equals its valuation for g1 which equals its valuation for g2.
Agent i′s strategy consists of two parts:

1. It selects at most one of the auctions, in which it will
participate.

2. It submits a bid in the selected auction.

Parallel auctions for substitute goods define a Bayesian
game in a natural way. For example, if the auctions are
second-price auctions, then an appropriate equilibrium of
the corresponding parallel auction is as follows: each agent
randomly selects one of the auctions, and sends his actual
valuation as his bid there.

Another type of parallel auction is the parallel auction for
complementary goods. Here we have two similar auctions,
e.g. second-price auctions, for two different goods g1 and
g2. The set of agents N = N1 ∪ N2 ∪ Np consists of three
parts:

• N1 are agents that are interested only in g1

• N2 are agents that are interested only in g2

• Np are agents that have valuation 0 for g1 and for g2,
but their valuation for the pair {g1, g2} is uniformly
distributed on the interval [0, 2].

For ease of exposition we will assume that we can distin-
guish whether an agent is from group N1, N2, or Np, and
that the agents in Np have extremely high negative utility
for losses. This second assumption means that an agent will
never submit bids in both auctions; notice that we assumed
that an agent who is interested in obtaining a pair of goods
has a valuation of 0 for getting only one of them, and there-
fore by bidding in two auctions the agent may end up getting
and paying for only one good. Hence, we will assume that
the strategies available to the agents are as in the case of
substitute goods.

We will rely on the notion of surplus in our evaluation of
coordinators for parallel auctions. The surplus of an allo-
cation is defined as the sum of agents’ valuations for that
allocation. For example, in a parallel auction for substitute
goods the surplus of an allocation that assigns good g1 in
auction 1 to agent i, and assigns good g2 in auction 2 to
agent j, is v1(g1) + v2(g2) (i.e., the sum of these agents’
valuations for the goods they are assigned).

4. COORDINATORS AND BIDDING
CLUBS

Let G ⊂ N , where 1 < |G| < n. W.l.o.g let the ele-
ments of G be {1, 2, . . . , |G|}. Given an auction A, denote
by Φi(A)(1 ≤ i ≤ n) the set of strategies available to agent
i ∈ N .

Given a set of coordinator messages, Mc, which we take
w.l.o.g to be R+, a (bidding club) coordinator is a pair of
functions C(A, G) = (T1(A, G), T2(A, G)), where T1(A, G) :

M
|G|
c → Φi(A)|G| and T2(A, G) = (tc

1, t
c
2, . . . , t

c
|G|), tc

i : M
|G|
c ×

Mn → R. Namely, a coordinator is a mechanism that asks
the agents in G for some information and decides on the
way they will behave in A; this is determined by the func-
tion T1(A, G). In addition, following the decision made by
T1(A, G), and given the messages sent in the main auction A
by members of N \G, an additional payment tc

i may be im-
posed on agent i. The payment can be negative, positive, or
zero. Mc contains the null message e that tells the coordina-
tor that the corresponding agent is not willing to participate
in the coordination activity. This agent will be free to partic-
ipate in the auction by itself, and will not be asked to make
any payments to the coordinator. A key assumption is that
participants in N \ G are unaware of even the possibility of
the existence of a coordinator, and that they act according
to an equilibrium of A. We denote the game obtained by
concatenating C(A, G) and A, by C̄(A, G). For every agent
i, let Li(A) be the agent’s expected utility in an equilibrium
of A, and let Li(C̄(A, G)) be the agent’s expected utility in
an equilibrium of C̄(A, G).

Definition 1. Given an auction A, and a G ⊂ N as be-
fore, we will say that a participation-preserving coordinator
for G in A exists, if there exists C(A, G), such that every
agent i ∈ G that would have had participated in A will also
participate in C(A, G) (in equilibrium of C̄(A, G)).

Definition 2. We say that a utility-improving coordi-
nator exists if there exists a participation-preserving coordi-
nator, and Li(C̄(A, G)) > Li(A) (i.e. participation in the
bidding club is beneficial).

The existence of a utility-improving coordinator for an
auction setup implies a self-enforcing cooperative strategy
for a group of agents.
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Definition 3. We say that a surplus-improving coor-
dinator for G in A exists if there exists a C(A, G) that
is participation-preserving , and the expected surplus of the
members of G in C̄(A, G) is greater than their expected sur-
plus in A.

When dealing with parallel auctions in sections 5.2 and
5.3, we will be interested in surplus-improving coordina-
tors. Besides the observation that neither concept implies
the other, the discussion of the connection between utility-
improving and surplus-improving coordinators is left to the
full paper.

5. COORDINATION IN SECOND-PRICE
AUCTIONS

5.1 Second-price auctions for a single good
The case of collusion in second-price auctions is discussed

in [2]. The following theorem may be deduced from this
work; we present the result here for the sake of completeness.
Consider a second-price auction. In the case of a second-
price auction a group of buyers may wish to avoid paying a
participation fee, or alternatively bidders who will certainly
lose may want to receive advance notice. As it turns out,
such behavior can be obtained:

Theorem 1. There exists a utility-improving coordinator
for second-price auctions.

Sketch of proof:
In the case of a second-price auction, no assumptions on

the distribution of the agents’ valuations need to be made.
We will assume that there is a participation fee d > 0, and
show a coordination protocol that enables the members of
the group G who do not have the highest valuation to avoid
paying d. We use the following protocol:

1. The agents in G are asked to submit their valuations
to the coordinator.

2. Let v1 and v2 denote the highest and second highest
valuations, announced by agents 1 and 2, respectively.3

3. Only agent 1 is represented in the main auction, and
his bid there will be v1.

4. If agent 1 wins the main auction, and is asked to pay
z, and z < v2, then agent 1 will pay v2 − z to the
coordinator.

We show that if the agents participate in the pre-auction
and reveal their true valuations there, then this cooperation
will be beneficial to them. The agent with the highest val-
uation cannot lose, because his behavior and expected gain
will be as in the case where there was no coordinator. The
other agents will gain due to the fact they won’t need to pay
the participation fee.

Consider now the agent i ∈ G with the highest valu-
ation, and assume that the other agents in G are truth-
revealing agents. Given that truth-revealing is an equilib-
rium of second-price auctions, agents in N \ G are taken to

3Note that, unlike in some of the coordination protocols
that follow, the coordinator behaves the same regardless of
whether some bidders decline to participate in the coordi-
nation.

be truth-revealing as well. Given that if the agent i wins
the main auction, then he pays exactly the highest valua-
tion in N − {i} (because he will pay the maximum of the
auction’s second-highest bid and v2). Standard second-price
auction analysis yields that it is irrational for i to deviate
from truth-revealing to the announcement of a higher valua-
tion. If agent i was willing to participate in the main auction
then clearly he does not wish to lose the pre-auction and
therefore announcing a lower valuation than his actual one
is irrational too. Clearly, every agent j �= i, j ∈ G does not
have any incentive to cheat if the others are truth-revealing.
He can only lose if by cheating he will be chosen to partici-
pate in the main auction.

It is easy to see that our result holds for Japanese auctions
as well. In a Japanese auction an auctioneer starts with a
low asking price, and continuously increments this price as
long as are still multiple agents willing to pay the current
price. Once only a single agent remains, he will get the good
for the current asking price. The fact our result holds also
for Japanese auctions is immediately implied by the fact
that in both Japanese auctions and second-price auctions
the good is sold to the agent with the highest valuation, at
a price that equals the second-highest valuation.

5.2 Parallel auctions with substitute goods
In this section we deal with parallel auctions of substitute

goods. Here the idea of the coordinator is to ensure that the
two agents with the highest valuations in the group G will
compete for different goods rather than among themselves.
This will enable to improve upon the surplus of the members
of G. We can show:

Theorem 2. There exists a surplus-improving coordina-
tor for parallel second-price auctions of substitute goods.

Sketch of proof:

1. The agents in G are asked to submit their valuations
to the coordinator.

2. Let v1, v2, and v3 denote the highest, the second high-
est, and the third highest valuations which have been
announced, respectively.4

3. Only the agents with the highest and second highest
valuations will participate in the main auction. The
agents will be randomly assigned to different auctions.

4. If an agent gets the object in auction Ai for the price
y < v3, then he will pay v3 − y to the coordinator.

It is clear that if all agents obey the coordinator’s pro-
tocol, and send their actual valuations to the coordinator,
then the agents will improve upon their surplus. In equilib-
rium agents will want to participate; for example, consider
agents 1 and 2, having the two highest bids submitted to the
coordinator. As a result of the coordination the first agent
will have a lower expected payment, since he will always pay
some amount less than v2, while the second agent will have
a greater chance of winning, since he will never be outbid
by agent 1.

4Once again, note that the coordinator behaves the same
regardless of whether some bidders decline to participate.
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We now show that truth-revealing is an equilibrium. Con-
sider an agent i1, with the highest valuation in G, v1, and
assume that the rest of the agents are truth-revealing. If
agent 1 reports a valuation higher than v1, and obtains as a
result of this a good he could not obtain otherwise, then it
must be the case that his payment is higher than his valua-
tion, which makes that deviation irrational. It is clear that
reporting on a valuation lower than v1 does not help agent
1.

Consider an agent i2, with the second-highest valuation
in G, v2, and assume the other agents are truth-revealing.
If the agent reports a higher valuation than v1 then he will
be the highest-ranking bidder in the pre-auction rather than
the second highest-ranking, but this will not benefit him as
the top two bidders are assigned to auctions randomly. The
rest of the analysis is the same as for i1.

Consider an agent i3, with the third-highest valuation in
G, v3, and assume the other agents are truth-revealing. If
the agent reports a valuation that causes it to gain the pre-
auction, then its payment will be at least v2 > v3, which
makes such deviation irrational. Similar analysis will hold
for agents with lower valuations.

5.3 Parallel auctions with complementary goods
In this section we deal with parallel auctions for comple-

mentary goods. Our aim is to allow the participants in G to
obtain a higher surplus than what they could obtain with-
out the coordinator. We assume that in G we have at least
two representatives of N1, N2 and Np. We can show:

Theorem 3. There exists a surplus-improving coordina-
tor for parallel second-price auctions of complementary goods.

Sketch of proof:
Let 0 < k << 1 be a commonly-known constant. We will

use the following coordinator5:

1. The coordinator asks the agents that are interested in
the single goods for their valuations

2. The coordinator selects two agents, s1 and s2, who
reported the highest valuations for goods g1 and g2,
v1 and v2 respectively.

3. If any agent from N1

⋃
N2 declined to participate, the

coordinator submits bids in the appropriate auctions
for all agents in N1

⋃
N2 who did elect to participate,

with a price offer equal to the agents’ stated valuations,
and the protocol is complete. Otherwise, if all agents
elected to participate, we proceed to step 4.

4. The coordinator announces v1 and v2 to all of the par-
ticipants in G.

5. The coordinator asks the agents that are interested in
the pair of goods for their valuations.

6. The coordinator randomly selects an agent, sp, who
reported a valuation vp for the pair of goods, such
that v1 + v2 + 2k < vp (if such an agent exists).

5This requires a quite straightforward modification to the
definition of coordinators, which we skip. Namely, a coor-
dinator can run a multi-stage game instead of the function
T1(A, G).

7. The coordinator bids v1 in A1, and v2 in A2.

8. If the coordinator wins both auctions, and an agent sp

exists, then sp will get the pair of goods and pay vsec1+
vsec2 to the coordinator, where vseci is the second-
highest bid in Ai. Agent sp will also pay agent i (i =
1, 2) k + max(0, vi − vseci).

9. If the coordinator only wins auction i, or if the coordi-
nator wins both auctions but there does not exist an
agent sp, then agent si gets the good and pays vseci

to the coordinator.

Consider an equilibrium of the corresponding C̄(A, G),
and an agent s′i ∈ Ni∩G (i = 1, 2). It is clear that in equilib-
rium s′i will participate in C(A, G) and that the submission
of a valuation which is at least as high as s′i’s valuation by s′i
dominates the submission of a lower valuation. This is due
to the fact that by submitting a valuation that is lower than
his actual valuation an agent can only lose, given that this is
a second-price auction. The agent cannot lose by participat-
ing in the pre-auction, since it is guaranteed to get at least
the difference between its stated valuation and the second-
highest bid, if its stated valuation is the highest. Moreover,
if agent sp wins the good then s′i may also get a payment of
k > 0. For this reason, and also because vseci may be less
than the highest rejected bid from Ni

⋂
G, truth revelation

will not be in the best interest of agent s′i. Instead, he will
submit a bid that exceeds his true valuation.

Given the above, an agent sp, who has interest in the pair
of goods will be willing to participate in the coordinator’s
protocol if v1 + v2 + 2k < vp. Note that all agents are
aware of k before placing their bids. It is easy to check
that it is irrational for sp to send a message that could win
the pre-auction if its valuation is smaller than v1 + v2 +
2k, and likewise it is irrational for sp to falsely submit a
valuation smaller than v1 + v2 + 2k. Otherwise the amount
submitted by sp is irrelevant, as the coordinator chooses
randomly between eligible agents in Np. Thus, expected
surplus is increased by this protocol.

6. COORDINATION IN FIRST-PRICE
AUCTIONS

Theorem 4. There exists a utility-improving coordinator
for first-price auctions.

Sketch of proof:
Recall that we assume that the agents’ valuations are

drawn uniformly from the interval [0, 1]. Our protocol can
be easily modified to deal with other distributions on the
agents’ types. Let m be the number of agents who will par-
ticipate in the main auction, who are not members of the
bidding club (and who are thus assumed not to be aware
even of the possibility of its existence). We use the following
protocol:

1. Invite the agents in G to submit their valuations to
the coordinator.

2. If any agent declines to participate, submit bids for all
agents that did elect to participate, with a price offer
of n−1

n
vi, and the protocol is complete. Otherwise, if

all agents elected to participate, we proceed to step 3.
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3. Let the two agents with the highest reported valuations
be agents 1 and 2, with reported valuations v1 and v2

respectively.

4. If v1
n

n
< v2

m · (v1 − v2), submit a bid only for agent 1,
with a price offer of v2.

5. Otherwise, submit bids for all agents i ∈ G, with price
offer n−1

n
vi.

First, we show that if the agents reveal their true valu-
ations then beneficial cooperation ensues. It is clear that
the only agent who can gain is the agent with the highest
valuation, v1, while the other agents do not lose. Note that
v1

n

n
is the expected utility of agent 1 at the equilibrium in

the original mechanism, while v2
m · (v1 − v2) is his expected

utility if he submits a bid of v2 in a modified mechanism
with m + 1 participants. v1 benefits because the protocol is
tailored specifically to him: the coordinator offers agent 1
the choice of participating in the original mechanism at its
equilibrium, or of eliminating some bidders from the auction
and bidding v2. In every situation, the coordinator selects
the alternative that agent 1 would prefer, given his stated
valuation. (Note that there exists a set with non-zero mea-
sure of values of v1 and v2 satisfying the condition in step
3 of the protocol; the demonstration of this fact is left to
the full version of the paper.) At the same time, no bidder
suffers from being eliminated: each eliminated bidder is as-
sured that a bid will be placed in the main auction exceeding
his valuation.

Now we show that the protocol leads the agents to re-
veal their true valuations. As a result, participation will
be rational for all agents. To show that truth-revelation is
an equilibrium, assume that all but one of the agents sub-
mit their true valuations. Notice that since only agent 1
can profit from the bidding club, the only reason that any
agent other than agent 1 would lie is to become the agent
with the highest valuation. However, this agent would then
either be represented in the original mechanism above the
equilibrium, or be made to bid v1, more than his valuation.
Agent 1 has no reason to lie because the mechanism is tai-
lored exactly to him, as described above.

Note that, paradoxically, the bidding club can also benefit
bidders who don’t even know of its existence! This is due
to the fact that in equilibrium of first-price auctions, bids
are decreasing as a function of the number of participants,
and we assume that all agents are made aware of the num-
ber of bidders participating in the main auction.6 Bidders
who are unaware of the bidding club will thus submit lower
bids if the bidding club eliminates bidders than if it does
not. We do not analyze the case where bidders who are un-
aware of the bidding club are aware of the total number of
bidders including those eliminated by the coordinator, since
this knowledge would lead them to knowledge of the bidding
club’s existence (when they observed that a smaller number
of bids were actually entered in the auction), violating a key
assumption of our model.

6We assume that the number of bidders participating in the
auction is determined according to the number of distinct
bidders wanting to submit bids. Thus if the coordinator
places only one bid in the main auction then bidders who are
unaware of the bidding club will also be unaware of bidders
who were eliminated in the bidding club’s pre-auction.

It is easy to see that our result holds for Dutch auctions as
well. In a Dutch auction the auctioneer starts with a high
asking price, and then continuously decrements this price
until an agent claims the good for the current price. The
fact our result holds also for Dutch auctions is immediately
implied by the strategic equivalence between first-price auc-
tions and Dutch auctions.

7. BIDDING CLUBS FOR GENERAL
MECHANISMS

The first-price and the second price auctions are two rep-
resentative auctions, but many other auctions, as well as
other economic mechanisms (various types of trades, nego-
tiations, etc.), are also discussed in the literature. In this
section we show that utility-improving coordinators exist for
many other related contexts as well.

General mechanisms are usually analyzed using Bayesian
games. In a Bayesian game each agent has a set of possible
types, and an agent’s strategy is a decision of his action as a
function of his type. The actual type of the agent is known
to him, and is selected from a commonly known distribution
function. The payoff of each agent is a function of both the
joint strategy of the agents and the particular type of the
agent. In the context of auctions, the types of the agents
refer to their valuations. The definition and analysis of equi-
librium strategies for general mechanisms will therefore be
similar to what we described in Section 3 for the case of
auctions.

In order to prove results that are general and hold for any
mechanism, researchers have used the following observation,
which is a direct implication of the definition of an equilib-
rium of a Bayesian game. It turns out that it is enough
to consider only mechanisms such that in the equilibrium
of the corresponding Bayesian game the agents will reveal
their true types. According to this observation, termed the
revelation principle, it is natural to restrict our attention
to (main) mechanisms which make a decision based on true
information supplied by the agents.

This brings us to the following general problem. Assume
that the agents’ types are selected from a finite set, and that
the agents are about to participate in a given truth revealing
mechanism M . Assume that the equilibrium of the game as-
sociated with that mechanism leads to a non Pareto-optimal
outcome for at least one tuple of agent types (i.e. for this
tuple of types the agents would better perform a joint strat-
egy that is different from the equilibrium strategy). Can a
coordinator be used in order to make a cooperative (bene-
ficial and incentive compatible) deal among the agents? In
the sequel, we assume that the valuations of the agents are
taken from V = {v1, . . . , vm} where vi < vi+1 for every i.
We can show:

Theorem 5. Consider a truth revealing mechanism with
unique strict Bayesian equilibrium, that leads to a non Pareto-
optimal outcome for at least one tuple of agent types. Then,
a utility-improving coordinator exists.

Basic idea behind proof: Each agent will be invited to
send his valuation to the coordinator. The coordinator will
calculate a tuple of other valuations that would benefit the
agents (assuming they reported their actual valuations), if
submitted to the main mechanism. Notice that while an
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agent would lose in equilibrium by deviating from truth-
revelation in the original mechanism, sending true valuations
is not necessarily an equilibrium if the coordinator submits
the new tuple. However, we can show that there exists a
useful coordinator which also maintains incentive compati-
bility.

1. Invite the agents to submit their valuations to the co-
ordinator.

2. If any agent declines to participate, submit the de-
clared valuations of all participating agents to the main
mechanism.

3. Otherwise, submit the new tuple of valuations to the
main mechanism on behalf of all agents with proba-
bility p; with probability 1 − p submit the valuations
reported by the agents.

The probability p is determined as follows. Consider an
agent i, who made the announcement vi. First, we can com-
pute the maximum expected gain, gi, that i could achieve by
submitting a valuation v′

i �= vi. Second, we can compute i’s
smallest expected loss in the original mechanism, li, if vi is a
false valuation. Notice that li is positive, given the assump-
tion that truth-revelation is a strict Nash equilibrium. Let
g = maxi(gi) and l = mini(li). Then we can take p = l

g+l
.

The analysis of this protocol is straightforward. Agents
should want to participate, as their expected utility is in-
creased. Incentive compatibility is ensured because the most
an agent can gain by lying is p·g−(1−p)·l = l

g+l
·g− g

g+l
·l =

0. On expectation agents will lose by lying, since g and l
are calculated globally, not individually for each agent.

8. CONCLUSION
In this paper we have presented the notion of bidding clubs

and its use in obtaining self-enforcing cooperation in classi-
cal auction setups. We have presented protocols for parallel
second-price auctions for substitutable and complimentary
goods, for first-price auctions for single goods, and for gen-
eral mechanisms under various assumptions. Our work can
be considered as a first attempt to formalize “strategic buy-
ers’ clubs”, where participants may cheat about their valu-
ations and so the club’s protocol must be designed carefully
enough to account for this possibility. The study of bidding
clubs is complementary to the rich work on efficient market
design [4, 1, 6]. Bidding clubs take the agents’ perspective
in improving their situation in existing markets, rather than
taking a center’s perspective on optimal, revenue maximiz-
ing market design.
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We introduce a class of mechanisms, called bidding clubs, that allow agents
to coordinate their bidding in auctions. Bidding clubs invite a set of agents to
join, and each invited agent freely chooses whether to accept the invitation or
whether to participate independently in the auction. Agents who join a bidding
club first conduct a “pre-auction” within the club; depending on the outcome
of the pre-auction some subset of the members of the club bid in the primary
auction in a prescribed way. We model this setting as a Bayesian game, including
agents’ choices of whether or not to accept a bidding club’s invitation. After
describing this general setting, we examine the specific case of bidding clubs for
first-price auctions. We show the existence of a Bayes-Nash equilibrium where
agents choose to participate in bidding clubs when invited and truthfully declare
their valuations to the coordinator. Furthermore, we show that the existence of
bidding clubs benefits all agents (including both agent inside and outside of a
bidding club) in several different senses.1

1. INTRODUCTION

The advent of internet markets has spurred new interest in auctions.
Most work in both economics and computer science has concentrated on
the design of auction protocols from the seller’s perspective, and in par-
ticular on optimal (i.e., revenue maximizing) auction design. In this pa-
per we present a class of systems to assist sets of bidders, bidding clubs.
The idea is similar to the idea behind “buyer clubs” on the Internet (e.g.,
www.mobshop.com): to aggregate the market power of individual bidders.
Buyer clubs work when buyers’ interests are perfectly aligned; the more
buyers join in a purchase the lower the price for everyone. In auctions held
on the internet it is relatively easy for multiple agents to cooperate, hiding
behind a single auction participant. Intuitively, these bidders can gain by
causing others to lower their bids in the case of a first-price auction or by
possibly removing the second-highest bidder in the case of a second-price

1This work was partly supported by DARPA grant number F30602-98-C-0214-
P00005.
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auction. However, the situation in auctions is not as simple as in buyer
clubs, because while bidders can gain by sharing information, the competi-
tive nature of auctions means that bidders’ interests are not aligned. Thus
there is a complex strategic relationship among bidders in a bidding club,
and bidding club rules must be designed accordingly.

1.1. Related Work

While there is relative scarcity of previous work on bidder-centric mech-
anisms, certainly our work has not been carried out in a vacuum. Below we
discuss the most relevant previous work and its relation to ours. This work
all comes under the umbrella of collusion in auctions, a negative term still
reflecting a seller-oriented perspective. We adopt a more neutral stance to-
wards such bidder activities and thus use the term bidding clubs rather than
the terms bidding rings and cartels that have been used in the past. How-
ever, the technical development is not impacted by such subtle differences
in moral attitude.

1.1.1. Collusion in Second-Price Auctions

One of the first formal papers to consider collusion in second-price auc-
tions was written by Graham and Marshall [Graham and Marshall, 1987].
This paper introduces a knockout procedure: agents announce their bids in
a pre-auction; only the highest bidder goes to the auction but this bidder
must pay a “ring center” the amount of his gain relative to the case where
there was no collusion. The ring center pays each agent in advance; the
amount of this payment is calculated so that the ring center will budget-
balance ex-ante, before knowing the agents’ valuations.

Graham and Marshall’s work has been extended to deal with varia-
tions in the knockout procedure, differential payments, and relations to
the Shapley value [Graham et al., 1990]. The case where only some of
the agents are part of the cartel is discussed by Mailath and Zemsky
[Mailath and Zemsky, 1991]. Ungern and Sternberg [von Ungern-Sternberg, 1988]
discuss collusion in second-price auctions where the designated winner of
a cartel is not the agent with the highest valuation. Finally, although this
fact is not presented in any existing work of which we are aware, it is also
easy to extend Graham and Marshall’s protocol to handle an environment
where multiple cartels may operate in the same auction alongside indepen-
dent bidders.

Overall, a much richer body of work deals with second-price auctions
than with first-price auctions. This is possibly explained by the fact that
since second-price auctions give rise to dominant strategies, it is possible
to study collusion in many settings related to these auctions without per-
forming strategic equilibrium analysis.
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1.1.2. Collusion in First-Price Auctions

The key exception to the scarcity of formal work on first-price auctions is
a very influential paper by McAfee and McMillan [McAfee and McMillan, 1992].
It is the closest in the literature to our work, and indeed we have borrowed
some modelling elements from it. Several sections of their paper, including
the discussion of enforcement and the argument for independent private
values as a model of agents’ valuations, are directly applicable to our pa-
per. However, the setting introduced in their work assumes that a fixed
number of agents participate in the auction and that all agents are part of
a single cartel that coordinates its behavior in the auction. The authors
show optimal collusion protocols for “weak” cartels (in which transfers be-
tween agents are not permitted: all bidders bid the reserve price, using the
auctioneer’s tie-breaking rule to randomly select a winner) and for “strong”
cartels (the cartel holds a pre-auction, the winner of which bids the reserve
price in the main auction while all other bidders sit out; the winner dis-
tributes some of his gains to other cartel members through side payments).
A small part of the paper deals with the case where in addition to the
single cartel there are also additional agents. However, results are shown
only for two cases: (1) when non-cartel members bid without taking the
existence of a cartel into account and (2) when each agent i has valuation
vi ∈ {0, 1}. The authors explain that they do not attempt to deal with
general strategic behavior in the case where the cartel consists of only a
subset of the agents; furthermore, they do not consider the case where mul-
tiple cartels can operate in the same auction. Finally, a brief presentation
of “cartel-formation games” is related to our discussion of agents’ decision
of whether or not to accept an invitation to join a bidding club.

1.1.3. Other Work on Collusion

Less formal discussion of collusion in auctions can be found in a wide
variety of papers. For example, a survey paper that discusses mechanisms
that are likely to facilitate collusion in auctions, as well as methods for the
detection of such schemes, can be found in [Hendricks and Porter, 1989]. A
discussion and comparison of the stability of rings associated with classical
auctions can be found in [Robinson, 1985]. That paper concentrates on the
case where the valuations of agents in the cartel are honestly reported.

Collusion is also discussed in other settings. For example, the literature
discusses collusion that aims to influence purchaser behavior in a repeated
procurement setting (see [Feinstein et al., 1985]), and in the context of gen-
eral Bertrand or Cournot competition (see [Cramton and Palfrey, 1990]).

We should also mention that in an earlier paper we have anticipated
some of the results reported here. Specifically, in [Leyton-Brown et al., 2000]
we considered bidding clubs under the assumptions that only a single bid-
ding club exists, and that bidders who were not invited to join the club are
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not aware of the possibility that a bidding club might exist. The current
paper is an extension and generalization of that earlier work.

1.2. Distinguishing Features of our Model

Our goal in this work is to study cooperation between self-interested bid-
ders in a rich model that captures many of the characteristics of auctions on
the internet. This leads to many differences between our model and mod-
els proposed in the work surveyed above (particularly [Graham et al., 1990]
and [McAfee and McMillan, 1992]). In particular, we argue that a model
of an internet auction setting that includes bidding clubs should include
the following features:

1. The number of bidders is stochastic.

2. There is no minimum number of bidders in a bidding club (i.e., bid-
ding clubs are not required to contain all bidders).2

3. There is no limit to the number of bidding clubs in a single auction.

4. Club members and independent bidders behave strategically, acting
according to correct beliefs about this complex environment.

The first feature above is crucial. In many real-world internet auctions,
bidders are not aware of the number of other agents in the economic en-
vironment. A bidding club that drops one or more interested bidders is
thus undetectable to other bidders in an internet auction. An economic
environment with a fixed number of bidders would not model this uncer-
tainty, as the number of interested bidders would be common knowledge
among all bidders regardless of the number of bids received in the auction.
For this reason, we consider economic environments where the number of
bidders is chosen at random. We make use of a model of auctions with
stochastic numbers of participants which is due to McAfee and McMillan
[McAfee and McMillan, 1987]; we also refer to equilibrium analysis of this
model by Harstad, Kagel and Levin [Harstad et al., 1990].

1.3. Bidding Clubs at a Glance

Roughly speaking, a scenario with bidding clubs has the following struc-
ture:

1. Given a primary auction;

2. Given a set of bidders in that auction, drawn randomly from a set of
potential bidders;

2For technical reasons we will have to assume that there is a finite maximum number
of bidders in each bidding club; however, this maximum may be any integer greater than
or equal to two.

56



3. Given a partition of bidders into disjoint clubs, each of which can be
the redundant singleton club;

4. Each bidder chooses whether to bid in the primary auction directly
or through his club (it is assumed that this choice is strictly enforce-
able). In the latter case, the bidder declares his valuation to the club
coordinator;

5. Based on the bidders’ choices and declarations each club bids in the
primary auction, as do both the bidders who elected not to join their
respective clubs and the singleton bidders.

6. Each (non-singleton) club bids according to pre-specified, commonly
known rules. These rules also specify internal allocations and possible
monetary transfers among club members upon the conclusion of the
primary auction.

To make bidding clubs a more realistic model of collusion in internet
auctions, we restrict bidding club protocols in the following ways:

1. Participation in bidding clubs requires an invitation, but bidders must
be free to decline this invitation without (direct) penalty. In this way
we include the choice to collude as one of agents’ strategic decisions,
rather than starting from the assumption that agents will collude.

2. Bidding club coordinators must make money on expectation, and
must never lose money. This ensures that third-parties have incen-
tive to run bidding club coordinators. Note that this requirement is
not satisfied by a [Graham et al., 1990]-type result, in which bidding
clubs (or, in their parlance, cartels) are budget balanced ex ante, but
may lose money in individual auctions.

3. The bidding club protocol must give rise to an equilibrium where
all invited agents choose to participate, even when the bidding club
operates in a single auction as opposed to a sequence of auctions.
This means that agents can not be induced to collude in a given
auction by the threat of being denied future opportunities to collude.

1.4. Overview

This paper consists of two parts. First, sections 2 through 4 present
relevant background that does not directly concern cooperation between
bidders. In section 2 we give a formal model of an auction with a stochastic
number of participants based on the model in [McAfee and McMillan, 1987].
We set up an economic environment in which a finite number of agents is
chosen at random from an infinite set of potential agents. We also give a
general model of auction mechanisms based on [Monderer and Tennenholtz, 2000],
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and define symmetric Bayes-Nash equilibria for the resulting Bayesian
game. In section 3 we consider different variations on the first-price auc-
tion mechanism. We begin with classical first-price auctions, in which the
number of bidders is common knowledge, and then consider first-price auc-
tions in the economic environment from section 2, where the number of
bidders is drawn from a known distribution. Combining results from both
auction types, we present first-price auctions with participation revelation:
auctions in which the number of bidders is stochastic, but the auction-
eer announces the number of participants before taking bids. This is the
auction mechanism upon which we will base our bidding club protocol for
first-price auctions. Finally, section 4 makes use of the revelation princi-
ple to show a class of auction mechanisms in which bidders are subject
to different payment rules and may have different private information (in
addition to their valuations), yet all bid truthfully. We think that this re-
sult is interesting in its own right, and certainly it is applicable to settings
other than collusion; however, it is also necessary to the proof of the main
theorem in section 6.

The second part of our paper is concerned explicitly with bidding clubs,
using material from the first part to present a general model of bidding clubs
and then a bidding club protocol for first-price auctions. First, section 5
expands the economic environment from section 2 to include the following
novel features:

• A finite set of bidding clubs is selected from an infinite set of potential
bidding clubs.

• A finite set of agents is selected to participate in the auction, from
an infinite set of potential agents. Some agents are associated with
bidding clubs, and the whole procedure is carried out in such a way
that no agent can gain information about the total number of agents
in the economic environment from the fact of his own selection.

• The space of agent types is expanded to include both an agent’s
valuation, and the number of agents present in that agent’s bidding
club (equal to one if the agent does not belong to a bidding club).

We introduce notation to describe each agent’s beliefs about the num-
ber of agents in the economic environment, conditioned on that agent’s
private information. We also augment the auction mechanism from sec-
tion 2 to describe additional strategic choices available to agents invited
to bidding clubs. In section 6 we examine bidding club protocols for first-
price auctions. We begin with two assumptions on the distribution of agent
valuations: the first related to continuity of the distribution, and the sec-
ond to monotonicity of equilibrium bids. After a technical lemma relating
equilibrium bids in auctions with stochastic numbers of participants un-
der different distributions, we give a bidding club protocol for first-price
auctions with participation revelation. Our main technical results follow:
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• We show that it is an equilibrium for agents to accept invitations to
join bidding clubs when invited and to disclose their true valuations
to their bidding club’s coordinator. Under the same equilibrium,
singleton agents bid as they would in an auction with a stochastic
number of participants in an economic environment without bidding
clubs, in which the distribution over the number of participants is
the same as in the bidding clubs setting.

• In equilibrium each agent is better off as a result of his own club (that
is, his expected payoff is higher than would have been the case if his
club never existed, but other clubs—if any—still did exist).

• In equilibrium each club increases all non-members’ expected payoffs,
as compared to equilibrium in the case where all club members par-
ticipated in the auction as singleton bidders, but all other clubs—if
any—still existed.

• In equilibrium each agent’s expected payoff is identical to the case
in which no clubs exist; note that since clubs make money on ex-
pectation, if clubs are willing to make money (or break even) only
on expectation, they could distribute some of their ex ante expected
profits among the club members, ensuring that all bidders gain on
expectation.

Finally, sections 7 and 8 consist of discussion and conclusions. We
touch on questions of trustworthiness of coordinators, legality of bidding
clubs and steps an auctioneer could take to disrupt the operation of bidding
clubs in her auction.

2. AUCTION MODEL

In this section we provide a (non-controversial) auction model, meant
to capture an internet auction setting such as eBay. Of course, this model
is applicable to many other auctions as well. Auctions may be seen as
consisting of an economic environment plus an auction mechanism which
together define a Bayesian game. First, our economic environment consists
of a stochastic number of agents, each of which has private information
about the number of participants in the auction and knows the distribu-
tion from which others’ types are drawn. This section draws heavily on
work by McAfee and McMillan [McAfee and McMillan, 1987] on auctions
with a stochastic number of participants. Second, the game includes an
auction mechanism in which the agents participate; this section is based
on [Monderer and Tennenholtz, 2000]. After defining these elements, we
give a formal definition of the Bayesian game.
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2.1. The Economic Environment

An economic environment E consists of a finite set of agents who have
non-negative valuations for a good at auction, and a distinguished agent 0—
the seller or center. The set of agents is selected by an exogenous process,
and each agent is unaware of the total number of agents participating in
the economic environment. Following [McAfee and McMillan, 1987], let
the set of agents who may participate in the economic environment be
A ≡ N. Let βA represent the probability that a finite set A ⊂ A is the set
of agents. The probability that n agents3 will participate in the auction
is γA(n) =

∑
A,|A|=n βA. All agents know the probability distribution βA.

Once an agent k is selected, he updates his probability of the number of
agents present as:

pk
n =

∑
A,|A|=n,k∈A βA∑

A,k∈A βA
. (1)

We deviate from the model in [McAfee and McMillan, 1987] by adding
the assumption that it is common knowledge that all bidders are equally
likely to be chosen. Hence pk

n is the same for all k; we will hereafter refer
only to pn. Finally, we assume that γA(0) = γA(1) = 0; at least two agents
will participate in the auction.

Let T be the set of possible agent types. The type τi ∈ T of agent i
is the tuple (vi, si) ∈ V × S. vi denotes an agent’s valuation: his maximal
willingness to pay for the good offered by the center. We assume that vi

represents a purely private valuation for the good, and that vi is selected in-
dependently from the other vj ’s of other agents from a known distribution,
F , having density function f . By si we denote agent i’s signal: his private
information about the number of agents in the auction. In this section we
will consider the simple case where S = {∅}: it is common knowledge that
all agents receive the null signal, and hence gain no additional information
about the number of agents. Note, however, that the economic environ-
ment itself is always common knowledge, and so agents always have some
information about the number of agents even when they receive the null
signal. We will consider more complex signals in section 5. We will use the
notation pτi

n to denote the probability that agent i assigns to there being
n agents in the auction, conditioned on his type τi. Throughout the pa-
per we will use uppercase P to denote the whole probability distribution
as compared to the probability of a particular number of agents which we
have denoted by lowercase p; in this case we denote the whole distribution
conditioned on i’s type as P τi .

The utility function of agent i, ui : R → R is linear, normalized with
ui(0) = 0. The utility of agent i (having valuation vi) when asked to pay

3When we say that n agents participate in the auction we do not count the distin-
guished agent 0, who is always present.
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t is vi − t if i is allocated a good, and it is 0 otherwise. Thus, we assume
that there are no externalities in agents’ valuations and that agents are
risk-neutral.

2.2. The Auction Mechanism

We denote the possible allocations of the good to the agents by Π. An
auction mechanism is a tuple (M, g, t), where:

• M is the set of possible messages an agent may send.

• g : Mn → ∆(Π) is an allocation function where ∆(Π) is the tuple of
distribution functions over Π (e.g., the allocation may include random
elements).

• t = (t1, t2, . . . , tn), ti : Mn × Π → R is the (monetary) transfer
function for agent i.

Notice that n is a parameter. Technically, an auction mechanism defines
g and t for any number of participants, and can be therefore considered as
a set of tuples (one for each number of agents).

Given the above, the dynamics of an auction mechanism can be de-
scribed as follows:

• Each agent i sends a message µi to the center. We denote the set of
messages received by the center as µ.

• The center conducts a lottery according to the distribution g(µ), and
selects the allocation π.

• Agent i gets πi, and is required to transfer ti(µ, π) to the center.

• The utility of i is vi − ti(µ, π) if he is assigned a good, and it is
−ti(µ, π) otherwise.

2.3. The Bayesian Game

The auction mechanism (M, g, t), in conjunction with the economic en-
vironment E, defines a Bayesian game. We will use the following definitions
and notation. A strategy bi : T → M for agent i is a mapping from his
type τi to a message µi. This may be the null message, which means that
he has elected not to participate in the auction. Σ denotes the set of possi-
ble strategies, i.e., the set of functions from types to messages in M. Each
agent’s type is that agent’s private information, but the whole setting is
common knowledge.

For notational simplicity we only define symmetric equilibria, where
all agents bid the same function of their type, as this is sufficient for our
purposes in this paper. A more general definition would proceed along the
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same lines. By Li(τi, bi, b
j−1) we denote agent i’s ex post expected utility

given that his type is τi, he follows the strategy bi and all other agents use
the strategy b, in the case that there are a total of j agents. The strategy
profile bn ∈ Σn is a symmetric equilibrium if and only if:

∀i ∈ A,∀τi ∈ T , b ∈ argmax
bi∈Σ

∞∑
j=2

pτi
j Li(τi, bi, b

j−1) (2)

3. FIRST-PRICE AUCTIONS

In this section we discuss several different variants of the first-price
auction. First we describe classical first-price auctions, in which a fixed
number of participants belong to the economic environment, and hence
the number of bidders is common knowledge. Next we consider first-price
auctions with a stochastic number of participants, where the number of
bidders in the economic environment is drawn from a known distribution.
Using the previous two settings, we present first-price auctions with par-
ticipation revelation, where the number of agents is chosen stochastically,
but the auctioneer announces the number of agents who have registered in
the auction before taking bids. This last type of first-price auction is the
one we will consider in our discussion of bidding clubs in section 6.

3.1. Classical first-price auctions

In a classical first-price auction, each participant submits a bid in a
sealed envelope. The agent with the highest bid wins the good and pays
the amount of his bid, and all other participants pay nothing. In the case
of a tie, the winner of the auction is selected uniformly at random from the
bidders who tied for the highest bid. (Note, however, that when F is con-
tinuous and has no atoms the probability of two bidders having the same
type is 0; ties will therefore occur with probability 0 if bidders follow an
equilibrium in which they all bid a strictly monotonically-increasing func-
tion of their valuations.) The equilibrium analysis of first-price auctions is
quite standard:

Proposition 1. If valuations are selected independently according to
the uniform distribution on [0, 1] then it is a symmetric equilibrium for each
agent i to follow the strategy:

b(vi) =
n − 1

n
vi.

Using classical equilibrium analysis (e.g., following Riley and Samuelson
[Riley and Samuelson, 1981]) it is possible to show how classical first-price
auctions can be generalized to an arbitrary continuous distribution F .
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Proposition 2. If valuations are selected from a continuous distribu-
tion F then it is a symmetric equilibrium for each agent i to follow the
strategy:

b(vi) = vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du.

.

In both cases, observe that although n is a free variable, n is not a
parameter of the strategy; the same is true of the distribution F . Agents
deduce this information from their full knowledge of the economic environ-
ment. It is useful, however, to have notation specifying the amount of the
equilibrium bid as a function of both v and n. We write

be(vi, n) = vi − F (vi)−(n−1)

∫ vi

0

F (u)n−1du. (3)

3.2. First-price auctions with a stochastic number of bidders

In the economic environment described in section 2.1 the number of
agents is not a constant; rather, it is chosen stochastically from a known
probability distribution. An equilibrium for this setting was demonstrated
by Harstad, Kagel and Levin [Harstad et al., 1990]:

Proposition 3. If valuations are selected from a continuous distribu-
tion F and the number of bidders is selected from the distribution P then
it is a symmetric equilibrium for each agent i to follow the strategy:

b(vi) =
∞∑

j=2

pjb
e(vi, j)

Observe that be(vi, j) is the amount of the equilibrium bid for a bidder
with valuation vi in a setting with j bidders as described in section 3.1
above. P is deduced from the economic environment.4 We overload our
previous notation for the equilibrium bid, this time as a function of the
agent’s valuation and the probability distribution P . Thus we write:

be(vi, P ) =
∞∑

j=2

pjb
e(vi, j) (4)

We will make frequent use of this function throughout the paper. An
important note is that it describes the equilibrium bid in the situation
where the economic environment is such that the number of agents is chosen
by P and where all agents receive the null signal.

4Recall that P is a set: pj ∈ P for all j ≥ 0, where pj denotes the probability that
the economic environment contains exactly j agents.
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3.3. First-price auctions with participation revelation

In some first-price auctions (e.g., auctions held on the internet), bidders
participate in an economic environment where the number of bidders in the
auction is not common knowledge. However, this can be helpful informa-
tion for bidders. One obvious way of addressing this problem is to intro-
duce a two-phase mechanism with revelation of the number of participants
between the stages. Specifically, a first-price auction with participation
revelation is as follows:

1. Agents indicate their intention to bid in the auction.

2. The auctioneer announces n, the number of agents who registered in
the first phase.

3. Agents submit bids to the auctioneer. The auctioneer will only accept
bids from agents who registered in the first phase.

4. The agent who submitted the highest bid is awarded the good for the
amount of his bid; all other agents are made to pay 0.

It is unsurprising that, although a first-price auction with participation
revelation may have a stochastic number of participants,

Proposition 4. There exists an equilibrium of the first-price auction
with participation revelation where every agent i indicates the intention to
participate and bids according to be(vi, n).

Proof. Agents are always better off participating in first-price auctions
as long as there is no participation fee. The only way of participating is
to declare the intention to participate in the first phase of the auction.
Thus the number of agents announced by the auctioneer is equal to the
total number of agents in the economic environment. From proposition 2
it is best for agent i to bid be(vi, n) when it is common knowledge that the
number of agents in the economic environment is n. That is exactly the
case under our mechanism.

In section 6 we will be concerned with first-price auctions with infor-
mation revelation, but we will show an equilibrium in which the number
of agents registering in the first phase is smaller than the total number of
agents participating in the auction, because some bidders with low valua-
tions drop out as part of a collusive agreement. The auctioneer’s declaration
acts as a signal about the total number of bidders, but individual agents
will still be uncertain about the total number of opponents they face.

4. TRUTHFUL EQUILIBRIA IN ASYMMETRIC MECHANISMS

In this section we describe a particular class of auction mechanisms
that are asymmetric in the sense that every agent is subject to the same
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allocation rule but to a potentially different payment rule, and furthermore
that agents may receive different signals. It will be helpful for the proof of
our main theorem in section 6 to show that a truth-revealing equilibrium
exists in such auctions under the following two conditions:

1. The auction allocates the good to the agent who submits the highest
bid.

2. Consider the auction Mi in which all agents are subject to agent
i’s payment rule and the above allocation rule, and where (hypo-
thetically) all agents receive the signal si.5 Truth-revelation is a
symmetric equilibrium in Mi.

Observe that the second condition above is less restrictive than it may
appear. From the revelation principle we can see that for every auction
with a symmetric equilibrium there is a corresponding auction in which
truth-revealing is an equilibrium that gives rise to the same allocation and
the same payments for all agents. Mi can thus be seen as a revelation
mechanism for some other auction that has a symmetric equilibrium.

More formally, given a good g, let M represent a set of auctions {M1, . . . ,
Mn} which all allocate the good to the agent who submits the highest
bid, and which are all truth-revealing direct mechanisms for n risk-neutral
agents with independent private valuations drawn from the same distribu-
tion. We now define another auction M̄ :

1. Each agent i sends a message µi to the center.

2. The center allocates the good to the agent i with µi ∈ maxj µj . If
multiple agents submit the highest message, the tie is broken in some
arbitrary way.

3. Agent i is made to transfer ti(µ, π) to the center.6 The transfer
function ti is taken from Mi ∈ M.

We can now show:

Lemma 1. Truth-revelation is an equilibrium of M̄ .

Proof. The payoff of agent i is uniquely determined by the allocation
rule, the transfer function ti, and all agents’ strategies. Assume that the
other agents are truth revealing, then the other agents’ behavior, the al-
location rule, and agent i’s payment rule are all identical in M̄ and Mi.
Since truth-revelation is an equilibrium in Mi, truth-revelation is agent i’s
best response in M̄ .

5That is, for every agent j in the real auction, we create an agent k in the hypothetical
auction Mi having type τk = (vj , si).

6Of course, this transfer can be either positive or negative.
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Example. Consider an auction for a single good g, where eight agents
bid for the good. The agents’ valuations are IPV, IID from a known distri-
bution F , and the agents are risk-averse. Let M1 be a revelation mechanism
for a first-price auction: i.e., agents declare their valuations, and the win-
ner is charged be(v, 8). In an economic environment consisting of eight
agents with IPV valuations from F it is an equilibrium of M1 for agents
to truthfully declare their valuations to the center. Let M2 be a second-
price auction; truthful declaration is a weakly dominant strategy under this
auction type. Both M1 and M2 allocate the good to the agent with the
highest declaration, and so these auctions meet the conditions given at the
beginning of the section. Now consider an auction M̄ where odd-numbered
agents are subject to the payment rule from M1, and even-numbered agents
are subject to the payment rule from M2. By lemma 1, truth-revelation is
an equilibrium of M̄ . There are other differences between payment rules
that can cause agents’ expected utilities to differ: for example, lemma 1
would still hold if M2 gave each agent an additional payment of $10 for
participating in the auction.

The next corollary, which follows directly from the lemma, compares
a single agent’s expected utility under two different auctions M̄ and M̄ ′,
which implement different payment rules. We will need this result for our
proof of theorem 1.

Corollary 1. Consider two auctions M̄ and M̄ ′, defined as above,
which both implement the same transfer function for agent i. Agent i’s
expected utility is the same in both M̄ and M̄ ′.

Proof. The payoff of agent i is uniquely determined by the allocation
rule, its transfer function, and all agents’ strategies. Both M̄ and M̄ ′ have
the same allocation rule. Lemma 1 tells us that truth revelation is a best
response for all agents in both M̄ and M̄ ′, so all agents’ strategies are
identical in the two auctions. In general, agents may not receive the same
expected utility from M̄ and M̄ ′. However, since i has the same transfer
function in both auctions, i’s expected utility in M̄ is equal to his expected
utility in M̄ ′.

5. AUCTION MODEL FOR BIDDING CLUBS

In this section we extend both the economic environment and auction
mechanism from section 2 to include the characteristics necessary for a
model of bidding clubs. Because our aim is not to model a situation where
agents’ decision to collude is exogenous—as this would gloss over the ques-
tion of whether the collusion is stable—we include the collusive protocol
as part of the model and show that it is individually rational ex post (i.e.,
after agents have observed their valuations) for agents to choose to collude.
However, we do consider exogenous the selection of the set of agents who
are offered the opportunity to collude. Furthermore, we want to show the
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impact of the possibility of collusion upon non-colluding agents; indeed,
even colluding agents must take into account the possibility that other
groups of agents in the auction may also be colluding. Once we have de-
fined the new economic environment and auction mechanism, a well-defined
Bayesian game will be specified by every tuple of primary auction type, bid-
ding club rules and distributions of agent types, the number of agents and
the number of bidding clubs.

5.1. The Economic Environment

We extend the economic environment E from the previous section to
consist of a set of agents who have non-negative valuations for a good at
auction, the distinguished agent 0 and a set of bidding club coordinators
who may invite agents to participate in a bidding club. Intuitively, we
construct an environment where an agent’s belief update after observing
the number of agents in his bidding club does not result in any change in
the distribution over the number of other agents in the auction, because
the number of agents in each bidding club is independent of the number of
agents in every other bidding club.

5.1.1. Coordinators

Coordinators are not free to choose their own strategies; rather, they
act as part of the mechanism for a subset of the agents in the economic
environment. We select coordinators in a process analogous to our previous
approach for exogenously selecting agents: we draw a finite set of individ-
uals from an infinite set of potential coordinators. In this case, however,
this finite set is considered “potential coordinators”; in section 5.1.2 we will
describe which potential coordinators are “actualized”, i.e., correspond to
actual coordinators. Possible coordinators that are not actualized will cor-
respond to singleton bidders in the auction.

More formally, let C ≡ N (excluding 0) be the set of all coordinators.
βC represents the probability that a finite set C ⊂ C is selected to be the
set of potential coordinators. We add the restriction that all coordinators
are equally likely to be chosen. A consequence of this restriction is that
an agent’s knowledge of the coordinator with whom he is associated does
not give him additional information about what other coordinators may
have been selected. We denote the probability that an auction will involve
nc potential coordinators as γC(nc) =

∑
C,|C|=nc

βC . The distribution βC

is common knowledge. We assume that γC(0) = γC(1) = 0: at least two
potential coordinators will be associated with each auction.

5.1.2. Agents

We independently associate a random number of agents with each po-
tential coordinator, again drawing a finite set of actual agents from an
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infinite set of potential agents. If only one (actual) agent is associated
with a potential coordinator, the potential coordinator will not be actual-
ized and hence the agent will not belong to a bidding club. In this way
we model agents who participate directly in the auction without being as-
sociated with a coordinator. If more than one agent is associated with
a potential coordinator, the coordinator is actualized and all the agents
receive an invitation to participate in the bidding club.

More formally, let A ≡ N be the set of all agents, and let κ be the
maximum number of agents who may be associated with a single bidding
club. Partition A into subsets, where agent i belongs to the subset A�i/κ�.
Let βA be the probability that a finite set A ⊂ Ai is the set of agents
associated with potential coordinator i; we assume that this distribution
is the same for all i. Furthermore, as above, we assume that it is common
knowledge that all agents are equally likely to be chosen. The probability
that n agents will be associated with a potential coordinator is denoted
γA(n) =

∑
A,|A|=n βA. By the definition of κ, ∀j > κ, γA(j) = 0; we

assume that γA(0) = 0 and that γA(1) < 1.

5.1.3. Signals

Each agent receives a signal informing him of the number of agents in
his bidding club; as above we denote this signal as si.7 Of course, if this
number is 1 then there is no coordinator for the agent to deal with, and
he will simply participate in the main auction. Note also that agents are
neither aware of the number of potential coordinators for their auction nor
the number of actualized potential coordinators, though they are aware of
both distributions.

5.1.4. Beliefs

Once an agent is selected, he updates his probability distribution over
the number of actual agents in the economic environment. Not all agents
will have the same beliefs—agents who have been signaled that they be-
long to a bidding club will expect a larger number of agents than singleton
agents. We denote by pn,k

m the probability that there are a total of m agents
in the auction, given that there are n bidding clubs and that there are k
agents in the bidder’s own club; we denote the whole distribution Pn,k.
Because the numbers of agents in each bidding club are independent, ob-
serve that every agent in the whole auction has the same beliefs about the
number of other agents in the economic environment, discounting those
agents in his own bidding club. Hence agent i’s beliefs are described by

7In fact, none of our results require that agents know the number of agents in their
bidding clubs; it would be sufficient that agents know whether they belong to a bidding
club. We consider the setting where agents’ signals are more informative because it
simplifies the exposition of the main theorem.

68



the distribution Pn,si . It is important to note that Pn,si is simply an-
other distribution over the number of agents in the auction. Although this
shorthand makes reference to the bidding club economic environment in
order to describe the construction of the distribution, it makes sense to
talk about a classical auction with a stochastic number of bidders (i.e.,
section 3.2) where the number of bidders is distributed according to Pn,k

for given values of n and k.

5.2. The Augmented Auction Mechanism

Bidding clubs, in combination with a main auction, induce an aug-
mented auction mechanism for their members:

1. A set A of bidders is invited to join the bidding club.

2. Each agent i sends a message µi to the bidding club coordinator.
This may be the null message, which indicates that the agent will
not participate in the coordination and will instead participate freely
in the main auction. Otherwise, agent i agrees to be bound by the
bidding club rules, and µi is agent i’s declared valuation for the good.
Of course, i can lie about his valuation.

3. Based on pre-specified and commonly-known rules, and on the infor-
mation all the members supply, the coordinator selects a subset of
the agents to bid in the main auction. The coordinator may bid on
behalf of these agents (e.g., using their ID’s on the auction web site)
or it may instruct agents on how to bid. In either case we assume
that the coordinator can force agents to bid as desired, for example
by imposing a charge on agents who do not behave as directed.

4. If a bidder represented by the coordinator wins the main auction, he
is made to pay the amount required by the auction mechanism to the
auctioneer. In addition, he may be required to make an additional
payment to the coordinator.

Any number of coordinators may participate in an auction. However,
we assume that there is only a single coordination protocol, and that this
protocol is common knowledge.

6. BIDDING CLUBS FOR FIRST-PRICE AUCTIONS

In this section we first give some (mild) assumptions about the distri-
bution of agent valuations, then use these assumptions to prove a technical
lemma. We then give the bidding club protocol for first-price auctions. We
consider a first-price auction with participation revelation as described in
section 3.3. Bidders indicate their intention to participate, the auction-
eer announces the total number of bidders and then bidders place their
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bids. The bidding club decides whether to drop bidders before the first
phase; therefore the number announced by the auctioneer does not include
dropped bidders. We show an equilibrium of this auction, and demonstrate
that agents gain under this equilibrium.

6.1. Assumptions

Our results hold for a broad class of distributions of agent valuations—
all distributions for which the following two assumptions are true.

First, we assume that F is continuous and atomless.
In order to give our second assumption, we must introduce some nota-

tion. Define:

Px≥i =
∞∑

x=i

px. (5)

We now define the relation “<” for probability distributions:

P < P ′ iff ∃l(∀i < l, Px≥i = p′x≥i and ∀i ≥ l, Px≥i < P ′
x≥i). (6)

We are now able to state our second assumption:

(P < P ′) implies that ∀v, be(v, P ) < be(v, P ′), (7)

Intuitively, we assume that every agent’s symmetric equilibrium bid in
a setting with a stochastic number of participants drawn from P ′ is strictly
greater than that agent’s symmetric equilibrium bid in a setting with a
stochastic number of participants drawn from P , in the case where P ′

stochastically dominates P .

6.2. A Technical Lemma

Recall from section 5.1.4 that the notation Pn,k may be seen as defining
a probability distribution over the number of agents that is independent
of the bidding club setting. It is thus possible to discuss equilibrium bids
in the classical stochastic settings where the number of bidders is drawn
from such a distribution. While it will remain to show why these values
are meaningful in our setting where (among other differences) agents have
asymmetric information, it will be useful to prove the following lemma
about the classical stochastic setting:

Lemma 2. ∀k ≥ 2,∀n ≥ 2,∀v, be(v, Pn+k−1,1) > be(v, Pn,k)

Remark. For convenience and to preserve intuition in what follows
we will refer to the number of potential coordinators and the number of
agents belonging to a coordinator even though we concern ourselves with
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the classical economic environment from section 2.1 where bidding clubs
do not exist. The number of potential coordinators is shorthand for the
number nc drawn from γC in the first phase of the procedural definition
of the distribution Pn,k. Likewise the number of agents associated with a
potential coordinator is shorthand for the number of agents chosen from
one of the nc iterative draws from γA. Intuitively, this lemma asserts that
the symmetric equilibrium bid is always higher when more agents belong
to the main auction as singleton bidders and the total number of agents is
held constant.

Proof. Recall our second assumption from section 6.1. We defined P <
P ′ as the proposition that ∃l(∀i < l, Px≥i = P ′

x≥i and ∀i ≥ l, Px≥i < P ′
x≥i).

Our second assumption was that (P < P ′) implies that ∀v, be(v, P ) <
be(v, P ′). It is thus sufficient to show that Pn+k−1,1 > Pn,k. We will take
l = n + k.

First we will show that ∀j < n + k, Pn+k−1,1
x≥j = Pn,k

x≥j . The distribution
Pn+k−1,1 expresses the belief that there are n+k−2 potential coordinators,
the membership of which is distributed as described in section 5.1, and
one potential coordinator that is known to contain only a single bidder.
The distribution Pn,k expresses the belief that there are n − 1 potential
coordinators, the membership of which is again distributed as described in
section 5.1, and one potential coordinator that is known to contain exactly
k bidders. Under both distributions it is certain that there are at least
n + k − 1 agents. Therefore ∀j < n + k, Pn+k−1,1

x≥j = Pn,k
x≥j = 1.

Second, ∀j ≥ n + k, Pn+k−1,1
x≥j > Pn,k

x≥j . Considering Pn+k−1,1, observe
that for n + k − 2 of the potential coordinators the probability that this
coordinator contains a single agent is less than one and these probabili-
ties are all independent; the last potential coordinator contains a single
agent with probability one. Considering Pn,k, there are n − 1 potential
coordinators where the probability of containing a single agent is less than
one, exactly as above, and k potential coordinators certain to contain ex-
actly one agent. Thus the two distributions agree exactly about n − 1 of
the potential coordinators, which both hold to contain more than a sin-
gle agent, and likewise both distributions agree that one of the potential
coordinators contains exactly one agent. However, there remain k − 1
potential coordinators about which the distributions disagree; Pn+k−1,1

always generates a greater or equal number of agents for these potential
coordinators, as compared to Pn,k. Under the latter distribution all these
agents are singletons with probability one, while under the former there
is positive probability that each of the potential coordinators contains
more than one agent. As long as k ≥ 2, there is at least one poten-
tial coordinator for which Pn+k−1,1 stochastically dominates Pn,k. Thus
∀k ≥ 2,∀n ≥ 2,∀v Pn+k−1,1 > Pn,k.
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6.3. First-Price Auction Bidding Club Protocol

What follows is the protocol of a coordinator who approaches k agents.

1. Each agent i sends a message µi to the coordinator.

2. If at least one agent declines participation then the coordinator regis-
ters in the main auction for every agent who accepted the invitation
to the bidding club. For each bidder i, the coordinator submits a bid
of be(µi, P

n,k), where n is the number of bidders announced by the
auctioneer.

3. If all k agents accepted the invitation then the coordinator drops all
bidders except the bidder with the highest reported valuation, who
we will denote as bidder h. For this bidder the coordinator will place
a bid of be(µh, Pn,1) in the main auction.

4. If bidder h wins in the main auction, he is made to pay be(µh, Pn,1)
to the center and be(µh, Pn,k) − be(µh, Pn,1) to the coordinator.

We are now ready to prove the main theorem of the paper:

Theorem 1. It is an equilibrium for all bidding club members to choose
to participate and to truthfully declare their valuations to their respective
bidding club coordinators, and for all non-bidding club members to partici-
pate in the main auction with a bid of be(v, Pn,1).

Proof. We first prove that the above strategy is in equilibrium for both
categories of bidders given that agents all participate; we then prove that
participation is rational for all agents.

For the proof of equilibrium we consider a one-stage mechanism which
behaves as follows:

1. The center announces n, the number of bidders in the main auction.

2. Bidders submit bids (messages) to the mechanism.

3. The bidder with the highest bid is allocated the good.

4. The winning bidder is made to pay be(vi, P
n,si).

This one-stage mechanism has the same payment rule for bidding club
bidders as the bidding club protocol given above, but no longer implements
a first-price payment rule for singleton bidders. In order to prove that the
strategies given in the statement of the theorem are an equilibrium, it is
sufficient to show that truthful bidding is an equilibrium for all bidders
under the one-stage mechanism. Observe that this mechanism may be
seen as a mechanism M̄ in the sense of lemma 1: it allocates the good to
the agent who submits the highest message, and (by definition of be) the
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auction Mi in which all agents are subject to agent i’s payment rule and
receive the signal si has truth revelation as a symmetric equilibrium.

Strategy of non-club bidder: Assume that all bidding club agents bid
truthfully. Further assume that all non-club agents also bid truthfully
except for agent i. The probability distribution Pn,1 correctly describes the
beliefs of non-club agents, given the auctioneer’s announcement that there
are n bidders in the main auction. Although agents in bidding clubs have
additional information about the number of agents—each agent knows that
there is at least one other agent in his own club—their prescribed behavior
is to place bids of be(µ, Pn,1) in the main auction. Agent i thus faces a
stochastic number of agents distributed according to Pn,1 and all bidding
be(v, Pn,1). Using the result from lemma 1, i’s strategic decision is the same
as under a mechanism where all agents are subject to his payment rule and
share his signal si, and with a stochastic number of bidders distributed
according to Pn,1. In particular, it does not matter that the club members
are subject to different payment rules and have additional information, and
so i will also bid be(v, Pn,1).

Strategy of club bidder: Assume that all agents accept the invitation
to join their respective clubs and then truthfully declare their valuations,
excluding agent i who decides to participate but considers his bid. Once
again, observe that i is in a setting that is exactly described by lemma
1: Pn,k really does describe the distribution over the number of agents
given his signal, and the bidder submitting the highest (global) message
will always be allocated the good. Therefore the information asymmetry
does not affect i’s strategy, and so truthful bidding is a best response for
agent i.

We now turn to the question of participation; for this part of the proof
we return to the original, multi-stage mechanism.

Participation of non-club bidder: Because there is no participation fee,
it is always rational for a bidder to participate in a first-price auction.

Participation of club bidder: Likewise, because there is no participation
fee, all bidding club bidders will participate in the auction, but must decide
whether or not to accept their coordinators’ invitations. Assume that all
agents except for i join their respective clubs and bid truthfully, and agent
i must decide whether or not to join his bidding club. Agent i knows the
number of agents in his bidding club and updates his distribution over the
number of agents in the whole auction as Pn,k.

Consider the classical stochastic case where all bidders have the same
information as i (and are subject to the same payment rules): from propo-
sition 3 it is a best response for i to bid be(vi, P

n,k). In this setting i’s
expected gain is the same as in the equilibrium where all bidding club
members (including i) join their clubs and bid truthfully, by corollary 1.

As a result of i declining the offer to participate in the bidding club
there are n− 1 bidders in the main auction placing bids of be(v, Pn+k−1,1)
and k − 1 other bidders placing bids of be(v, Pn,k). Note that this occurs
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because the singleton bidders and other bidding clubs in the main auction
follow a strategy that depends on the number of bidders announced by
the auctioneer; hence they bid as though all the k − 1 bidders from the
disbanded bidding club might each be independent bidding clubs. We
know from lemma 2 that be(v, Pn+k−1,1) > be(v, Pn,k). Thus the singleton
bidders and other bidding clubs will bid a higher function of their valuations
than the bidders from the disbanded bidding club. It always reduces a
bidder’s expected gain in a first-price auction to cause other bidders to
bid above the equilibrium, because it reduces the chance that he will win
without affecting his payment if he does win. This is exactly the effect of
i declining the offer to join his bidding club: the k − 1 other bidders from
i’s bidding club bid according to the equilibrium of the classical stochastic
case discussed above, but the n − 1 singleton and bidding club bidders
submit bids that exceed the symmetric equilibrium amount. Therefore i’s
expected gain is smaller if he declines the offer to participate than if he
accepts it.

6.4. Do bidding clubs cause agents to gain?

We can show that bidders are better off being invited to a bidding club
than being sent to the auction as singleton bidders. Intuitively, an agent
gains by not having to consider the possibility that other bidders who would
otherwise have belonged to his bidding club might themselves be bidding
clubs.

Theorem 2. An agent i has higher expected utility in a bidding club
of size k bidding as described in theorem 1 than he does if the bidding club
does not exist and k additional agents (including i) participate directly in
the main auction as singleton bidders, again bidding as described in theorem
1.

Proof. Consider the counterfactual case where agent i’s bidding club
does not exist, and all the members of this bidding club become single-
ton bidders. We will show that i is better off as a member of the bid-
ding club than in this case. If there were n potential coordinators in
the original auction and k agents in i’s bidding club, then the auction-
eer will announce n + k − 1 as the number of participants in the new
auction. Under the equilibrium from theorem 1, as a singleton bidder i
will bid be(vi, P

n+k−1,1). If he belonged to the bidding club and followed
the same equilibrium i would bid be(vi, P

n,k). In both cases the auction
is economically efficient, which means i is better off in the auction that
requires him to pay a smaller amount when he wins. Lemma 2 shows
that ∀k ≥ 2,∀n ≥ 2,∀v, be(v, Pn+k−1,1) > be(v, Pn,k), and so our result
follows.

We can also show that singleton bidders and members of other bidding
clubs benefit from the existence of each bidding club in the same sense. Fol-
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lowing an argument similar to the one in theorem 2, other bidders gain from
not having to consider the possibility that additional bidders might repre-
sent bidding clubs. Paradoxically, other bidders’ gain from the existence of
a given bidding club is greater than the gain of that club’s members.

Corollary 2. In the equilibrium described in theorem 1, singleton bid-
ders and members of other bidding clubs have higher expected utility when
other agents participate in a given bidding club of size k ≥ 2, as compared
to a case where k additional agents participate directly in the main auction
as singleton bidders.

Proof. Consider a singleton bidder in the first case, where the club of k
agents does exist. (It is sufficient to consider singleton bidders, since other
bidding clubs bid in the same way as singleton bidders.) Following the
equilibrium from theorem 1 this agent would submit the bid be(vi, P

n,1).
Theorem 2 shows that it is better to belong to a bidding club (and thus to
bid be(vi, P

n,k)) than to be a singleton bidder in an auction with the same
number of agents (and thus to bid be(vi, P

n+k−1,1). Since the distribution
Pn,k is just Pn,1 with k − 1 singleton agents added, ∀k ≥ 2, be(vi, P

n,1) <
be(vi, P

n,k). Thus ∀k ≥ 2, be(vi, P
n,1) < be(vi, P

n+k−1,1).

Finally, we can show that agents are indifferent between participating
in the equilibrium from theorem 1 in a bidding club of size k (thus, where
the number of agents is distributed according to Pn,k) and participating in
an economic environment with a stochastic number of bidders distributed
according to Pn,k, but with no coordinators.

Theorem 3. For all τi ∈ T , for all k ≥ 1, for all n ≥ 2, agent i obtains
the same expected utility by:

1. participating in a bidding club of size k in the economic environment
from section 5.1 and following the equilibrium from theorem 1;

2. participating in a first-price auction with participation revelation in
an economic environment with a stochastic number of bidders dis-
tributed according to Pn,k where all bidders receive the null signal,
and where there are no coordinators.

Proof. First we will show that agent i’s expected utility in case (2) above
is the same as in a classical first-price auction with a stochastic number of
bidders (i.e., without participation revelation). Second, we will show that
agent i’s expected utility in this classical stochastic setting is the same as
in case (1) above.

From proposition 4 it is an equilibrium for agent i to bid be(vi, j) in
a first-price auction with participation revelation (case (2)), where j is
the number of bidders announced by the auctioneer. Since the number of
agents is distributed according to Pn,k, the expected payment of agent i
is

∑∞
j=2 pn,k

j be(vi, j). This is the definition of be(vi, P
n,k) from equation 4.
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From proposition 3 this is an equilibrium bid of agent i when the number
of agents is distributed according to Pn,k (without information revelation).
Since both the classical first-price auction with a stochastic number of
bidders and the first-price auction with participation revelation are efficient,
agent i’s expected utility is the same under both auctions.

Under the equilibrium from theorem 1 (case (1)) the amount of i’s
payment will be be(vi, P

n,k) if he wins. Since both the mechanism from case
(1) and the classical first-price auction with a stochastic number of bidders
are efficient, agent i has the same expected utility in both auctions.

This theorem shows that an agent would be as happy in a world with-
out bidding clubs as he is in our economic environment. The difference be-
tween the two worlds is that in the latter bidding club coordinators make
a positive profit on expectation, and indeed never lose money. That is,
in the bidding club economic environment some expected profit is shifted
from the auctioneer to the bidding club coordinator(s) without affecting
the bidders’ expected utility. We observe that it would be easy for coordi-
nators to redistribute some of these gains to bidders along the lines of the
second-price auction protocol proposed by Graham and Marshall: coordi-
nators make a payment to every bidder who accepts the invitation to join,
where the amount of this payment is less than or equal to the ex ante ex-
pected difference that bidder makes to the coordinator’s profit. With this
modification coordinators would be budget balanced only on expectation
(violating requirement 2 from section 1.3), but agents would strictly prefer
the bidding club economic environment to the economic environment in
which coordinators are not present.

7. DISCUSSION

In this section we consider the trustworthiness and legality of coordina-
tors, and also discuss two ways for auctioneers to disrupt bidding clubs in
their auctions.

7.1. Trust

Why would a bidding club coordinator be willing to provide reliable
service, and likewise why would bidders have reason to trust a coordinator?
For example, a malicious coordination protocol could be used simply to
drop all its members from the auction and reduce competition. While this
is a reasonable concern, all the bidding club protocols discussed in this
paper allow the coordinator to make a profit on expectation. There is thus
incentive for a trusted third party to run a reliable coordination service.
Indeed, coordinators would be very inexpensive to run: as their behavior is
entirely specified, they could operate without any human supervision. The
establishment of trust is exogenous to our model; we have simply assumed
that all agents trust coordinators and that all coordinators are honest.
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7.2. Legality

We have often been asked about the legal issues surrounding the use
of bidding clubs. While this is an interesting and pertinent question, it
exceeds both our expertise and the scope of this paper. We should note,
however, that uses of bidding clubs exist that might not fall under the legal
definition of collusion. For example, a corporation could use a bidding club
to choose one of its departments to bid in an external auction. In this way
the corporation could be sure to avoid bidding against itself in the external
auction while avoiding dictatorship and respecting each department’s self-
interest. Coordinators may also be permitted by the auctioneer: e.g., by
an internet market seeking to attract more bidders to its site.

7.3. Disrupting Bidding Clubs

There are two things an auctioneer can do to disrupt bidding clubs in a
first-price auction. First, she can permit “false-name bidding.” Our auction
model has assumed that each agent may place only a single bid in the
auction, and that the center has a way of uniquely identifying agents. For
example, the auctioneer might use user accounts keyed to credit card billing
addresses in combination with a reputation ranking, making it impossible
for bidders to place bids claiming to originate from different agents. Second,
she can refrain from publicly disclosing the winner of the auction.

If bidders can bid both in their bidding clubs and in the main auction,
they are better off deviating from the equilibrium in theorem 1 in the
following way. A bidder i can accept the invitation to join the bidding
club but place a very low bid with the coordinator; at the same time, i
can directly submit a competitive bid in the main auction. Agent i will
gain by following this strategy when all other agents follow the strategies
specified in theorem 1 because accepting the invitation to join the bidding
club ensures that the club does drop all but one of its members and also
causes the high bidder to bid less than he would if he were not bound to the
coordination protocol. If the bidding club drops any bidders other than i
then all agents’ bids will also be lowered because the number of participants
announced by the auctioneer will be smaller, compared to the case where
the bidding club did not exist or where it was disbanded. However, if
false-name bidding is impossible and the winner of the auction is publicly
disclosed then the bidding club coordinator can detect an agent who has
deviated in this way. Because the agent has agreed to participate in the
bidding club the coordinator has the power to impose a punitive fine on
this agent, making the deviation unprofitable. If either or both of these
requirements does not hold, however, the coordinator will be unable to
detect defection and so the equilibrium from theorem 1 will not hold.
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8. CONCLUSION

We have presented a formal model of bidding clubs which departs in
many ways from models traditionally used in the study of collusion; most
importantly, all agents behave strategically based on correct information
about the economic environment, including the possibility that other agents
will collude. Other features of our setting include a stochastic number of
agents and a stochastic number of bidding clubs in each auction. Agents’
strategy space is expanded so that the decision of whether or not to join a
bidding club is part of an agent’s choice of strategy. Bidding clubs never
lose money, and gain on expectation. We have showed a bidding club
protocol for first-price auctions that leads to a (globally) efficient allocation
in equilibrium, and which does not make use of side-payments. There are
three ways of asking the question of whether agents gain by participating
in bidding clubs in first-price auctions:

1. Could any agent gain by deviating from the protocol?

2. Would any agent be better off if his bidding club did not exist?

3. Would any agent would be better off in an economic environment
that did not include bidding clubs at all?

We have showed that agents are strictly better off in the first two senses
and no worse off in the last sense; furthermore, we have described a simple
side-payment scheme that would make agents strictly better off in all three
senses. We have also showed that each bidding club causes non-members to
gain in the second sense. Finally, we have discussed ways for an auctioneer
to set up the rules of her auction so as to disrupt bidding clubs.
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Abstract
A major achievement of mechanism design theory is the family of

truthful mechanisms often called VCG (named after Vickrey, Clarke
and Groves). Although these mechanisms have many appealing prop-
erties, their essential intractability prevents them from being applied
to complex problems like combinatorial auctions. In particular, VCG
mechanisms require the agents to fully describe their valuation func-
tions to the mechanism. Such a description may require exponential
size and thus be infeasible for the agents.

A natural approach for this problem is to introduce an intermediate
language for the description of the valuations. Such a language must
be succinct to both the agents and the mechanism. Unfortunately, the
resulting mechanisms are neither truthful nor do they satisfy individual
rationality.

This paper suggests a general method for overcoming this difficulty.
Given an intermediate language and an algorithm for computing the
results, we propose three different mechanisms, each more powerful
than its predecessor, but also more time consuming. Under reasonable
assumptions, the results of our mechanisms are at least as good as the
results of the algorithm on the actual valuations. All of our mechanisms
have polynomial computational time and satisfy individual rationality.

1 Introduction

1.1 Motivation

The theory of mechanism design may be described as studying the design

of protocols under the assumption that the participants behave according
∗This research was supported by Darpa grants number F30602-98-C-0214 and F30602-

00-2-0598.
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to their own goals and preferences and not necessarily as instructed by the

protocol. The canonical mechanism design problem can be described as fol-

lows: A set of rational agents need to collaboratively choose an outcome

o from a finite set O of possibilities. Each agent i has a privately known

valuation function vi : O → R quantifying the agent’s benefit from each

possible outcome. The agents are supposed to report their valuation func-

tions vi(·) to some centralized mechanism that chooses an outcome o that

maximizes the total welfare
∑

i v
i(o). The main difficulty is that agents

may choose not to reveal their true valuations but rather report carefully

designed lies in an attempt to influence the outcome to their liking. The

tool that the mechanism uses to motivate the agents to reveal the truth

is monetary payments. These payments are to be designed in a way that

ensures that rational agents always reveal their true valuations – making

the mechanism, so called, incentive compatible or truthful. To date there is

only one general technique known for designing such a payment structure,

sometimes called the generalized Vickrey auction [21], the Clarke pivot rule

[1] the Groves mechanism [5], or, as we will, VCG. In certain senses this

payment structure is unique [4, 17].

Although VCG mechanisms have many appealing properties, their in-

tractibility prevents them from being applied to complex problems like

combinatorial auctions. This intractability is twofold: Firstly, VCG mecha-

nisms require the agents to fully describe their valuation functions. Secondly,

it requires the mechanism to find the optimal allocation.

The problem of combinatorial auctions (CA) is an important example of

a mechanism design problem. In CA, the designer would like to auction a set

S of items (e.g. radio spectra licenses) among a group of agents who desire

them. As items may be substitutes (e.g. two licenses in the same place)

or complementary (e.g. licenses in two neighboring states) the valuation

of each agent may have a complex structure. A formal definition of the
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problem can be found in section 2.1.

Consider a VCG mechanism for CA: The mechanism first asks each agent

to declare her valuation function, i.e. to report a function wi : 2S → R+. It

then computes the optimal allocation and the payments of each agent.

Such a mechanism is clearly intractable. Firstly, finding the optimal

allocation is NP-hard even to approximate. Secondly, the mechanism relies

on the agents’ ability to describe their valuations in a way which is succinct

to its allocation algorithm. This ability cannot be taken for granted. For

example a naive solution will require each agent to report a vector of 2|S|−1

numbers to the mechanism. This of course is not feasible unless the number

of items is very small. On the other extreme the designer can ask the

agents to submit oracles, i.e. programs that return for every set s their

valuation vi(s). However, it is not difficult to see that in order to find the

optimal allocation or even a reasonable one, the allocation algorithm must

query these oracles an exponential number of times. The natural solution

for this problem is to introduce the notion of a bidding language. Such

a language should enable the agents to efficiently represent or at least to

approximate their valuations, but should also allow the allocation algorithm

to compute the desired allocation in polynomial time. Hopefully such a

language will capture most ”real life” valuations. Various bidding languages

were proposed in recent years. The interested reader is pointed to [11].

The drawback of this approach is that there are always valuation func-

tions which are impossible to represent in polynomial-time. We therefore

call such languages incomplete. Since VCG mechanisms with incomplete

languages are not optimal, the impossibility results of [13] imply that they

cannot be truthful! In other words, instead of describing their true valua-

tion according to the designer’s instructions, agents may have incentive to

misreport. Therefore, there is no guarantee, even when the agents are ratio-

nal, that the mechanism will find a reasonable allocation. Moreover, such
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mechanisms do not even guarantee individual rationality. That is, there are

cases where truthful agents will pay for their allocated sets more than their

actual valuations for them.

Our goal in this paper is to prevent these phenomena.

1.2 This work

This paper proposes a general method for overcoming the non truthfulness

of VCG mechanisms with incomplete languages. We first introduce the no-

tions of oracles1, descriptions and consistency checkers in the context of

VCG mechanisms. Oracles are programs that represent the agents’ valua-

tions. They are used by the mechanism to measure the agents’ welfare. A

consistency checker is a function that checks whether an agent’s description,

which is given in the intermediate language, is consistent with her oracle.

These additions to the VCG method still do not suffice to guarantee its

truthfulness.

We then describe three mechanisms which guarantee that under rea-

sonable assumptions, truth-telling is the rational strategy for the agents.

Each mechanism is more powerful but also more time consuming than its

predecessor. All of our mechanisms have polynomial computational time.

Following [13] we adopt the concept of feasibly dominant actions (FDAs).

Informally speaking, we assume that the agents choose their actions (strate-

gies) according to their strategic knowledge. We say that an action is feasibly

domiant if the agent is not aware of any circumstances where another strat-

egy is better for her. It was argued in [13] that when feasibly dominant

actions are available for the agent, it is irrational for her not to choose one

of them. It was also shown in [13] that if the payment of a non-optimal mech-

anism is calculated according to the VCG formula, the existence of FDAs

must rely on further assumptions on the agent’s knowledge. Our mecha-
1Some advantages of using oracles were discussed in [19]
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nisms guarantee that, under such reasonable assumptions, truth-telling is

indeed an FDA. Each of them handles a more general form of knowledge

than its predecessor (i.e. more sophisticated agents).

When the agents are truthful, the result of our mechanisms is at least

as good as the result of the allocation algorithm on the truthfully reported

descriptions. Our mechanisms also satisfy individual rationality.

Note that our method does not make any assumptions on the algorithm

or the bidding language. The designer needs to design an intermediate lan-

guage, a consistency checker and an allocation algorithm such that, when the

agents prepare their descriptions according to her instructions, the overall

result is good. She then gets the mechanism for free.

For simplicity we prove all our theorems directly for the combinatorial

auction problem. Our results however are much more general and can be

applied to any VCG, weighted VCG or compensation and bonus [14] mech-

anism.

1.3 Related work

Non optimal VCG mechanisms were first studied in [13]. This paper dis-

cusses VCG mechanisms where the optimal algorithm is replaced by a poly-

time approximation or heuristic. This paper shows that mechanisms con-

structed this way cannot be truthful. It then proposes a general way of

dealing with this non-truthfulness using a certain form of appeal functions.

The problem of combinatorial auctions has been studied by several re-

searchers in recent years. A comprehensive survey of various aspects of

this problem can be found in [2]. In particular, various bidding languages

[3, 7, 20] and restrictions on the classes of bids that can be submitted (e.g.

[6]) were proposed. A comparative study of some of these languages can be

found in [11].

An alternative approach to the one that is taken here is to consider
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mechanisms where the agents are not required to declare their valuation

functions (non-revelation mechanisms). Examples of such mechanisms are

the simultaneous ascending auction [10] and iBundle [16]. The efficiency of

these auctions however is dependent on strong assumptions on the agents’

behaviour. They are also specifically designed to address the combinatorial

auction problem.

Finally, there is an extensive literature in the field of mechanism design.

An introduction can be found in [8, chapter 23] and [15, chapter 10]

Organization of this paper: The rest of the paper is organized as follows:

Section 2 formally defines combinatorial auctions and VCG mechanisms for

CA and explains their intractability. Section 3 provides an example of a

VCG mechanism with incomplete language and demonstrates the drawbacks

of such mechanisms. Section 4 defines our most basic mechanism, describes

the main concepts of [13] and shows that under reasonable assumptions on

the agents’ knowledge, truth-telling is an FDA. Sections 4 to 6 define ex-

tended versions of this mechanism and prove their basic properties. Section

7 discusses additional implementation issues and section 8 concludes the

paper.

2 Preliminaries

2.1 Combinatorial auctions (CA)

The problem of combinatorial auctions (CA) has been extensively studied

in recent years (see e.g. [7] [20] [3] [6] [11] ). The importance of this problem

is twofold. Firstly, several important applications rely on it (e.g. the FCC

auction [9]). Secondly, it is a generalization of many other problems of

interest, in particular in the field of electronic commerce. A recent survey of

various aspects of this problem can be found in [2]. For simplicity we prove

all our theorems directly for this problem.
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The problem: A seller wishes to sell a set S of items (radio spectra licenses,

electronic devices, etc.) to a group of n agents who desire them. Each agent

i has, for every subset s ⊆ S of the items, a non-negative number vi(s)

that represents how much s is worth for her. The function vi(.) is called

the agent’s valuation or type. We assume that vi(.) is privately known to

the agent. Given a (possibly partial) allocation s = (s1, . . . , sn) we shall

define the total welfare of the agents as g =
∑

i v
i(s). In this paper we will

be interested in mechanisms (protocols) which are designed to maximize

the total welfare. This goal is justified in many settings. There is also a

basic correlation between maximizing welfare and maximizing the seller’s

revenue. Solving the problem without monetary transfers is impossible (see

a discussion at [8, chapter 23]). We assume that the mechanism can ask

for payment from the agents and that the overall utility of each agent i is

ui = vi(s) + pi where s denotes the chosen allocation and pi the amount of

currency that the mechanism pays to the agent2. In an auction, pi will be

non-positive. This utility is what each agent tries to maximize.

For the sake of the example we take some standard additional assump-

tions on the type space of the agents:

No externalities The valuation of each agent depends only on the items

allocated to her. I.e. {vi(si)|s ⊆ S)} completely represents the agent’s

valuation.

Free disposal Items have non-negative values. I.e if s ⊆ t then vi(s) ≤

vi(t).

Normalization vi(φ) = 0.

Note that the problem allows items to be complementary, i.e.

vi(S
⋃
T ) ≥ vi(S) + vi(T ) or substitutes, i.e. vi(S

⋃
T ) ≤ vi(S) + vi(T )

2This is called the quasi-linearity assumption.
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(S, T disjointed). For example an agent may be willing to pay $200 for

a TV set, $150 for a VCR, $450 for both and only $200 for two VCRs.

The structure of the valuation functions might therefore be complex. The

problem of finding an optimal allocation is equivalent to set-packing and is

NP -hard even to approximate within any reasonable factor.

Note that the valuation functions are not known to the mechanism in

advance. Moreover, if the mechanism is not carefully designed, the agents

will have an incentive to manipulate it for their own self interest. Such

manipulations might severely damage the efficiency of the mechanism. In

mechanism design problems the agents are assumed to be rational in a game

theoretic sense. They choose strategies which are good for them and not nec-

essarily act as instructed. The goal of the designer is to design a mechanism

(protocol) that produces good results under this assumption. Comprehen-

sive surveys of mechanism design theory can be found in [15, chapter 10] [8,

chapter 23].

In order to handle complex problems like combinatorial auctions the

mechanism needs to address the following issues:

• Agents’ valuations might be complex to express.

• The allocation and payments might be hard to compute.

• The mechanism needs to be designed to find good allocations even

though the agents follow their own self interest.

Let us summarize our notations and terminology regarding this problem.

Notations: We shall denote the whole set of items by S and a (possibly

partial) allocation by s = (s1, . . . , sn). Note that the sis are disjointed. We

denote the type of agent i by vi and the group’s type by v = (v1, . . . , vn).

Let pi denote the amount of currency that the mechanism pays to each agent

i and ui the agent’s utility. Given an allocation s and a type v we denote by
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gs(v) the welfare
∑

i v
i(si). Finally we shall use the following vectorial nota-

tion: given a vector a = (a1, . . . , an) we let a−i = (a1, . . . , ai−1, ai+1, . . . , an)

and (bi, a−i) denote the vector (a1, . . . , ai−1, bi, ai+1, . . . , an).

2.2 VCG mechanisms for CA

One of the major achievements of mechanism design theory is the VCG

method for constructing truthful mechanisms. In this subsection we briefly

describe these mechanisms for CA and discuss some of their properties.

The simplest kind of mechanisms are protocols (called revelation mecha-

nisms) where the agents are simply required to (privately) report their types

to the mechanism. According to these declarations the mechanism computes

the allocation and the payments. Note that agents may lie if it is beneficial

for them. Such a mechanism can be denoted by a pair m = (k(w), p(w))

where k denotes the allocation function, p the payment function and w the

agents’ declaration .

Definition 1 (truthful mechanism) A revelation mechanism is called

truthful if truth-telling is a dominant strategy for all agents. I.e. if lying to

the mechanism can never be more beneficial than declaring vi.

VCG mechanism are a special kind of revelation mechanisms.

Definition 2 (VCG mechanism) A VCG mechanism for CA is a reve-

lation mechanism m = (k(w), p(w)) such that:

• The mechanism chooses an allocation s = k(w) that maximizes the

total welfare gs(w) according to the declaration w.

• The payment is calculated according to the VCG formula: pi(w) =∑
j 6=iw

j(s)) + hi(w−i) (hi(.) can be any real function of w−i).

Theorem 2.1 ([5]) A VCG mechanism is truthful.
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Proof: Assume by contradiction that the mechanism is not truthful. Then

there exists an agent i of type vi, a type declaration w−i for the other

agents, and wi 6= vi such that vi(k((vi, w−i))) + pi((vi, w−i)) + hi(w−i) <

vi(k((wi, w−i))) + pi((wi, w−i)) + hi(w−i). Let s = k((vi, w−i)) denote the

chosen allocation when the agent is truthful and let s′ = k((wi, w−i)). The

above inequality implies that gs((vi, w−i)) < gs′((vi, w−i)). This contradicts

the optimality of k(.).

Rational agents will therefore reveal their true type to the mechanism.

Thus, when agents are rational the mechanism will result in the optimal

allocation!

Note that the main trick of this method is to identify the utility of

truthful agents with the declared total welfare. Similar techniques were

introduced in [14] for handling different type of problems. The results pre-

sented here are applicable to their methods as well.

Another desirable property of mechanisms is called individual rationality.

This means that the utility of a truthful agent is guaranteed to be non-

negative. A special kind of VCG mechanism called Clarke’s mechanism

[1] can guarantee this property. It also guarantees that the payment of

agents who are not allocated any object is zero. It does so by setting hi =

−
∑

j 6=i k(w
−i) where k(w−i) denotes the result of the algorithm when agent

i is ”ignored”. Until section 7 we shall only be interested in truthfulness.

Thus, for simplicity we can assume that hi(w−i) ≡ 0.

It is worth notifying that weighted VCG mechanisms are possible as well

(see e.g. [17] [14]). Also the designer can impose her own preferences by

”pretending” to be one of the agents. To date VCG is the only general

known method for the construction of truthful mechanisms. There is also

some evidence [17] that other methods are generally impossible.
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2.3 The intractability of VCG mechanisms

Although VCG mechanisms have many desirable properties, their essential

intractability prevents them from being used for complex problems like CA.

This intractability is twofold: VCG mechanisms require the agents to fully

describe their valuation functions and require the mechanism to find opti-

mal allocations.

The second aspect has been extensively discussed in [13]. This paper

discusses VCG mechanisms where the optimal algorithm is replaced by a

poly-time approximation or heuristics. It shows that mechanisms which are

constructed in this way cannot be truthful. The paper proposes a method

to overcome this non-truthfulness. It suggests a bounded rationality variant

of truthfulness called feasible truthfulness and shows that under reasonable

assumptions there is a general way of constructing poly-time feasible truthful

mechanisms.

An even more fundamental obstacle on the way to the application of VCG

mechanisms (and revelation mechanisms in general) to complex problems is

the fact that the agents are required to describe their valuation functions

to the mechanism. Consider for example a VCG mechanism for CA. One

natural way in which an agent can describe her valuation function to the

mechanism is by reporting a vector of numbers denoting her valuation for

every possible combination of items. This however is infeasible unless the

number of items is very small as it will require a vector of size 2|S| − 1. On

the other extreme, the designer can ask the agent to construct an oracle, i.e.

a program that returns for every set s the agent’s valuation vi(s). However

it is not difficult to see that in order to find the best allocation or even

a reasonable one, the algorithm needs to query the oracle an exponential

number of times.

The natural solution for this problem is to introduce the notion of a
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bidding language (see e.g. [11]) – a language that will enable agents to effi-

ciently represent or at least approximate their valuations but will also allow

the mechanism’s algorithm to compute the desired allocation in polynomial

time. Hopefully such a language will capture most ”real life” valuations.

In addition the designer must provide the agents with instructions of how

to construct these descriptions from their actual valuations. Given such a

language L we can define VCG mechanisms as before. The bidding lan-

guage and allocation algorithm must be constructed in a way that when the

agents follow the designer’s instructions, the results will be good (heuristi-

cally, within a certain factor from the optimum etc.)

The problem with this approach is that there are always valuation func-

tions which are impossible to represent in polynomial-time. We therefore

call such languages incomplete. As such a mechanism is not optimal, the

impossibility results in [13] imply that VCG mechanisms with incomplete

languages cannot be truthful! In other words, agents may have incentives

not to follow the designer’s instructions. Therefore there is no guarantee,

even when the agents are rational, that the overall results will be good.

Moreover, such mechanisms do not even guarantee individual rationality.

That is, there are cases where truthful agents will pay for their allocated

sets more than their actual valuations for them.

In this paper we propose a general method for overcoming this non-

truthfulness. Our solution is in the same spirit of [13]. However several

additional steps are needed to guarantee the good game theoretical proper-

ties of the resulting mechanisms.

3 Example VCG with OR bids

In this section we describe a simple example for a VCG mechanism with

an incomplete bidding language. We shall use this example throughout
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A B AB
Agent1: 1 1 1.25 (2)
Agent2: 0.8 0.8 1.2 (1.6)

Figure 1: Type matrix for the OR example

the paper. We first describe the language and the mechanism. Then we

analyze what strategies rational agents might choose when participating in

it. Note that our language is less expressive than what we expect from real

life mechanisms. We will demonstrate that even with such a language it is

possible to construct mechanisms where truth-telling is the rational strategy.

Following [11] we define an atomic bid to be a pair (s, p) where s ⊆ S is

a set of items and p is a price. The semantic of such a bid is ”my maximum

willingness to pay for s is p”. A description in this language consists of a

polynomial number of such pairs. Given such a description (sj , pj) we can

define, for every set s, the price ps to be the maximal3 sum of pjs such that

sj ⊆ s are disjointed: max{
∑

j pj |(sj ⊆ s) and ∀j 6= k, sj
⋂
sk = φ}. This so

called OR language was used in [20].

Proposition 3.1 [11] OR bids can represent only super-additive valuation

functions.

The OR language therefore assumes that if an agent is willing to pay

up to PA for item A and PB for item B, then she is willing to pay at least

(PA + PB) for both.

Consider now the following (toy) example of a VCG mechanism: There

are only two items A and B. As shown in figure 3, the type of Agent1 is

(1, 1, 1.25) and of Agent2 is (0.8, 0.8, 1.2).
3For the sake of the example we ignore the fact that computing this maximum might

be NP -hard.
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Suppose that the designer instructs the agents to submit their true

valuation for every singleton. In this case we can define a description

di = {(sj , pj)} as truthful if for every item j, pj = vi(j). In other words,

such a description was prepared according to the designer’s instructions.

Consider a VCG mechanism with this language. After the descriptions are

reported, the mechanism allocates the items optimaly (according to the de-

scriptions but not to the actual allocations!). It then calculates the payments

according to the VCG formula. We assume that the designer has a small

reserved price for each item, so objects which are not desired by the agents

are not allocated.

In the example, when both agents are truthful, the mechanism will assign

the valuation in brackets to the set AB (see figure 3). The mechanism in this

case will allocate both items to Agent1 resulting in a utility of ui = 1.25 for

each agent (recall that we assume the simplified form where hi ≡ 0). The

optimal allocation will allocate to each agent one item, resulting in a welfare

of 1.8.

The above mechanism is not truthful. For example if Agent1 ”gives up”

item B and declares (1, 0, 1.25) while Agent2’s declaration remains the same,

it will cause the algorithm to produce the optimal result and therefore will

increase Agent1’s utility to 1.8! The same is true for Agent2. On the other

hand if both agents are ”giving up” the same item, only one item will be

allocated (to Agent1). This will result in a welfare of only 1.0. We shall

call a declaration where the agent reports a 0 value on one of the items

singleton concession. Another reasonable strategy for an agents is to find

a description which will bring the mechanism’s interpretation as close as

possible to her actual valuation. Formally we define the l∞-approximation

of vi(.) to be the description that minimizes maxs |vi(s) − di(s)|4. Such a
4For the sake of the example we ignore the fact that calculating such a description

might be NP-hard.
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description for Agent1 is {2/3, 2/3, 4/3} . Note that the worthwhileness

of such declarations is highly dependent on the declarations of the others.

There are cases where such declarations will considerably improve the result

of the algorithm and therefore will increase the agent’s utility. On the other

hand there are many cases where such designated ”lies” will severely damage

the total welfare and henceforth the agent’s utility.

Note that the Clarke version of the above mechanism does not satisfy

individual rationality. For example, if both agents are truthful, Agent1 gets

both items, but pays 1.6, thereby loosing 0.35.

In this paper we will try to prevent these bad phenomena from happen-

ing.

4 Mechanism1

In this section we describe our first and most basic mechanism. We first

describe the building blocks of the mechanism – oracles, descriptions and

consistency checkers. Then we define the mechanism and formulate its basic

properties. Finally we show that under reasonable assumptions truth-telling

is the rational strategy for the agents.

We start with a formal definition adopted from [13] of computationally

bounded algorithms5.

Definition 3 (algorithm of degree d) Let n denote the number of agents.

We say that a function F is of degree d if its running time is bounded by

some polynomial of degree d of n.

Our mechanism fixes a constant c = O(nd) and terminates each function

that runs more than c time units (see section 7 for more details).
5There are several alternative definitions. This one simplifies the formalization of the

results.
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4.1 Oracles and valid descriptions

All the mechanisms described in this paper ask the agents to prepare oracles

that represent their valuation functions. These oracles are queried by the

mechanisms in order to measure the total welfare. Formally:

Definition 4 (oracle) An oracle is a function w : 2S → R+. It is called

truthful for agent i if wi(s) = vi(s) for every set s.

We shall assume that agents are capable of preparing such oracles6. We

also assume that all the oracles are of degree d.

As mentioned earlier, it is hard for allocation algorithms to work with

oracles. We assume that the allocation algorithm accepts as input descrip-

tions in some bidding language (e.g. the OR language) and ask the agents

to prepare such descriptions. A consistency checker verifies that the agents’

descriptions are consistent with their oracles.

Definition 5 (valid description) A consistency checker is a function

ψ(w, d) such that:

• ψ(w, d) gets an oracle w and a description d in the bidding language

and returns a ”corrected” oracle w′.

• for every oracle w there exists at least one description d such that

w = ψ(w, d). Such ”fixpoint” descriptions are called valid.

Semantically, a valid description was prepared according to the designer’s

instructions. Since the mechanism can always use the ”corrected” oracle w′

we shall assume that agents’ descriptions are valid. We also assume that a

consistency checker of degree d is available to the designer and that given a
6The tools which must be provided by the designer in order to make this assumption

realistic are not discussed in this paper.
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declaration d, the designer can compute an oracle wd such that d is a valid

description of wd. We say that an agent’s description is truthful if it is a

valid description of a truthful oracle.

In the OR language for example we can define w′(s) = p for every atomic

bid (s, p) in the description. Creating an oracle w from a description d such

that d is valid is straight forward.

4.2 Appeal functions

Another basic building block of our mechanism is the notion of appeal func-

tions. This is a modification of the appeals that were introduced in [13].

Intuitively an appeal function lets an agent incorporate her own knowledge

about the algorithm into the mechanism. The idea is that instead of declar-

ing a falsified type, the agent can follow the designer’s instructions and ask

the mechanism to check whether the false description would have lead to

better results. The mechanism will then choose the better of these two

possibilities leveraging both the agent’s utility and the total welfare.

Definition 6 (appeal) An appeal function gets as input the agents’ oracles

and valid descriptions and returns a tuple of alternative descriptions. I.e.

it is of the form: l(w1, . . . , wn, d1, . . . , dn) = (d′1, . . . , d′n) where di is a valid

description of wi.

Note that the d′is do not have to be valid. The semantics of an appeal l is:

“when the agents’ type is w = (w1, . . . , wn) and is described by (d1, . . . , dn),

I believe that the output algorithm k produces a better result if it is given

d′ instead of the actual description d”.

We assume that all appeal functions are of degree d for some reasonable

value of d. In section 7 we will discuss ways to enforce such a limit.

In our OR example (section 3) an appeal for Agent1 might try to give

up one of the items (i.e. perform a singleton concession) or try to give up
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item A for herself and B for Agent2 etc.

The actual implementation of the appeal functions is discussed in sub-

section 7.

4.3 Mechanism1

We can now define our first mechanism.

Definition 7 (mechanism1) Given an allocation algorithm k(d), and a

consistency checker for the bidding language we define mechanism1 as fol-

lows:

1. Each agent submits to the mechanism:

• An oracle wi(.).

• A (valid) description di.

• An appeal function li(.).

2. Let w = (w1, . . . , wn), d = (d1, . . . , dn). The mechanism computes the

allocations k(d), k(l1(w, d)), . . . , k(ln(w, d)) and chooses among these

allocations the one that maximizes the total welfare (according to w!).

In other words, the mechanism tries all the appeals and chooses the

one that yields the best result.

3. Let ŝ denote the chosen allocation. The mechanism calculates

the payments according to the VCG formula: pi =
∑

j 6=iw
j(ŝ) +

hi(w−i, d−i, l−i) (hi(.) can be any real function).

Note that hi(.) is independent of agent i. Until section 7 we simply assume

that it is always zero. Note also that we do not require the allocation

algorithm k(.) to be optimal. It can be any polynomial time approximation

or heuristic.
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An action (strategy) in mechanism1 is a triplet (wi, di, li). We say that

such an action is truthful if wi is truthful. The following two observations

are key properties of the mechanism:

Proposition 4.1 Consider mechanism1 with an allocation algorithm k(.).

Let d = (d1, . . . , dn) denote the agents’ descriptions. If all the agents are

truth-telling, the allocation chosen by the mechanism is at least as good

as k(d).

Proposition 4.2 If the allocation algorithm k, the appeal functions, oracles

and consistency checkers are of degree d, then the mechanism is of degree

d+ 2.

Let ŝ denote the chosen allocation. Let ṽ = (vi, w−i). Since we assume

that hi() = 0, the utility of agent i equals gŝ(ṽ) – the total welfare when the

allocation is ŝ and the type is ṽ . Lying to the mechanism, i.e. submitting an

oracle wi 6= vi, is thus beneficial for the agent only if it causes the mechanism

to compute a better result (relatively to ṽ). (For a more comprehensive

discussion see [13].) Note that when an agent lies to the mechanism, she

may not only cause damage to the algorithm’s result, but may also cause

the mechanism to prefer the wrong allocation on the second stage. Thus,

an agent needs to have a good reason for lying to the mechanism.

We will show that under reasonable assumptions on the agents, truth-

telling is the rational strategy for the agents. Thus, when the agents are

rational, the result of the mechanism is at least as good as the result of the

allocation algorithm on the truthful descriptions.
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4.4 An example

Consider the OR example of section 3. Suppose that Agent1 notices that

usually the result of the algorithm improves when she is giving up item A.

In a VCG mechanism the agent may be tempted to misreport in order to

increase the total welfare and henceforth her own utility. In many cases how-

ever this will cause damage to the overall welfare and henceforth to Agent1.

In our mechanism Agent1 can, instead of lying, declare her true type to the

mechanism and ask it to check whether such a lie would have been helpful.

If so, it prefers the result that was obtained by ”lying”. Otherwise, the

mechanism prefers the result of the algorithm on the truthful description

and thus prevents the damage that would have been caused by the lie. This

form of appeal functions provides the agents with a lot of power. Suppose,

for example, that Agent1 notices that the result improves if she gives up

item A while Agent2 is giving up item B. As before, the agent can ask the

mechanism to check whether such a transformation of the input would have

improve the overall result.

We note that not every knowledge of the agent about the allocation

algorithm k(.) can be exploited in this mechanism. Suppose that Agent1

notices that when both agents submit l∞-approximations of their valuations

the overall result improves. However, as she is given an oracle for v2, she

cannot compute Agent2’s approximation as it requires her to query the

oracle for every possible subset. Therefore, she cannot exploit her knowledge

about the algorithm. Such phenomena is problematic and do not occur in

the setting of [13].

4.5 When is it rational to tell the truth to the mechanism?

It was shown in [13] that even with full descriptions available, non-optimal

VCG mechanisms cannot be truthful (unless they produce unreasonable re-
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sults). That paper introduces a bounded rationality variant of the concept

of dominant strategies called feasible dominance and shows that under rea-

sonable assumptions truth-telling is feasibly dominant for the agents. This

paper follows this pattern. In this section we first describe the basic con-

cepts of [13]. We then consider mechanis1 and analyze the conditions under

which truth-telling is feasibly dominant for the agents.

4.5.1 Feasibly dominant actions (FDAs)

In this section we briefly describe the main concepts of [13]. The reader is

referred to this paper for a more comprehensive discussion.

Notations: We denote the action (strategy) space of agent i by Ai. Given a

tuple a = (a1, . . . , an) of actions chosen by the agents, we denote the utility

of agent i by ui(a).

In mechanism1 an action for the agent is a triplet (wi, di, li).

In classical game theory, given the actions of the other agents a−i, the

agent is (implicitly) assumed to be capable of responding by the optimal ai.

As the action space is typically very complex, this assumption is not natural

in many real-life situations. The concept of feasibly dominant actions re-

formulates the concept of dominant actions under the assumption that the

agent has only a limited capability of computing her response. It is meant

to be used in the context of revelation games.

Definition 8 (strategic knowledge) Strategic knowledge (or response

function) of agent i is a partial function bi : A−i → Ai.

Knowledge is a function by which the agent describes (for herself!) how

she would like to respond to any given situation. The semantics of ai =

bi(a−i) is “when the others’ actions are a−i, the best action which I can

think of is ai”. The fact that a−i is not in the domain of bi means that the
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agent does not know how to respond to a−i or alternatively will not regret

her choice of action when the others played a−i. Naturally we assume that

each agent is capable of computing her own knowledge and henceforth that

bi is of degree d.

Definition 9 (feasible best response) An action ai for agent i is called

feasible best response to a−i if either a−i is not in the domain of the agent’s

knowledge bi or ui((bi(a−i), a−i)) ≤ ui(a).

In other words, other actions may be better against a−i but at least

when choosing her action the agent was not aware of these.

The definition of feasibly dominant actions now follows naturally.

Definition 10 (feasibly dominant action) An action ai for agent i is

called feasibly dominant if it is a feasible best response against any a−i. We

also call such an action FDA .

It was argued in [13] that if an agent has feasibly dominant actions

available, then it is irrational not to choose one of them.

4.5.2 When is it rational to tell the truth to the mechanism?

Recall that the overall utility of each agent i equals gŝ(ṽ) where ŝ denotes

the chosen allocation and ṽ = (vi, w−i). It is not difficult to see that when

the agent declares a falsified valuation, there are cases where she will con-

sequently lose. The agent needs therefore a good reason for lying to the

mechanism. When the appeals of the agents are time-limited (i.e. of degree

d) it was shown in [13] that the existence of FDAs for the agents must rely on

further assumptions on the agents’ knowledge. Here we formulate two such

assumptions and show how to construct computationally efficient truthful

FDAs for the agents.
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Definition 11 ([13]) (declaration based knowledge) Knowledge bi(.) is

called declaration based if it is of the form bi(w−i, d−i) = (wi, di).

The semantics of declaration based knowledge is: “If I knew that the

others declare (w−i, d−i), regardless of their appeals, I would like to declare

(wi, di)”. In our OR bids example of section 3, such knowledge for Agent1

may be: ”If Agent2 has a high valuation for item B, I would like to give it

up”.

A declaration based knowledge naturally defines an appeal function

which we also denote by bi(.): bi(w, d) = (bi(w−i, d−i), d−i).

Theorem 4.3 If bi(.) is a declaration based knowledge for agent i then

(vi, di, bi) is feasibly dominant for the agent.

Proof: Let ŝ denote the chosen allocation. Let ṽ = (vi, w−i). Recall that

the utility of agent i equals gŝ(ṽ). Also let φ denote the empty appeal.

Assume by contradiction that there exists a−i = (w−i, d−i, φ−i) that con-

tradicts the agent’s knowledge. Note that the appeals of the other agents

can be assumed empty and also that it must be that a−i is in the domain of

bi(.). Let (w′i, d′i) = bi(a−i). Let s = k(d) and let s′ = k(d′i, d−i) denote the

allocation when she lies. By the assumption, gs(ṽ) < g′s(ṽ). However when

the agent truthfully submits (vi, di, bi) the mechanism computes s = k(d)

and s′ = k(d′i, d−i) and takes the better among them according to ṽ. A

contradiction.

Definition 12 ([13])(appeal independent knowledge) Knowledge bi(.)

is called appeal independent if it is of the form bi(w−i, d−i) = (w′i, d′i, li).

Theorem 4.4 If bi(.) is an appeal independent knowledge of agent i then

there exists a truthful FDA of degree d for the agent.
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Proof: Define an appeal li as follows. Given (w−i, d−i) let (w′i, d′i, l′i) =

bi(w−i, d−i). li computes k(d′i, d−i), k(l′i((w′i, w−i), (d′i, d−i))) and takes the

best according to (vi, w−i). Since all the functions involved are of degree d,

so is li(.). Similarly to theorem 4.3, (vi, li) is an FDA.

The semantics of declaration based knowledge is the same as declaration

based except that the agent also submits an appeal li.

Agents who are not capable of reasoning about others’ appeals or do

not want to count on them would have appeal independent knowledge. We

argue that this would be the most common case. In all of the examples of

section 4.4 the agents’ knowledge was appeal independent.

5 Mechanism2: moving information around

A major difficulty that arises when coping with incomplete languages is

the asymmetric knowledge of the agents regarding their own valuations.

For example, in the setting of section 3, it is reasonable to assume that

Agent1 can compute her own l∞-approximation but Agent2 cannot compute

it. Thus, Agent1 might face the following considerations:

• The result of the algorithm improves significantly when all agents re-

port their l∞-approximations.

• Reporting my l∞-approximation instead of my truthful description,

will enable Agent2 to compute the optimal result.

In other words, in mechanism1, agents may want to misreport in order to

pass useful information about their own valuation to the others. In order to

prevent this we modify the mechanism to allow the agents to convey such

information.

Definition 13 (information structure) An information structure Ii

for agent i is a sequence of descriptions (possibly with repetitions)
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(d0, d1, . . . , dk) such that d0 is a valid description.

In addition we require each agent to provide for each dj an example

(w−i, d−i) such that k(dj , d
−i) is a better allocation than k(d0, d

−i). This is

done in order to force the agents to submit only useful information.

Ii contains additional information that the agent can pass to the others’

appeals. The semantics of Ii is ”My valid description is d0. Nevertheless, I

suggest that you first try to work with d1, after that with d2, etc”. Many

alternative ways to define such information structures are possible. It may

be interesting to compare between different structures.

We can now define our second mechanism.

Definition 14 (mechanism2) Given an allocation algorithm k(d), and

consistency checker for the bidding language we define mechanism2 as fol-

lows:

1. Each agent submits to the mechanism:

• an oracle wi. (let w = (w1, . . . , wn))

• an information structure Ii. (let I = (I1, . . . , In))

• an appeal function of the form li(w, I) = d.

2. The mechanism computes the allocations

k(d), k(l1(w, I)), . . . , k(ln(w, I)) and chooses among these alloca-

tions the one that maximizes the declared total welfare.

3. The mechanism calculates the payments according to the VCG formula.

We can now expand the definition of knowledge under which the exis-

tence of truthful FDAs is guaranteed. This definition refers to knowledge

that was obtained by checking a representative family of (tuples of) appeals

of the other agents.
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Definition 15 [13] (d-obtainable knowledge) Knowledge bi(.) is called

d-obtainable if the following holds:

1. bi is of degree d.

2. Every appeal function that appears in the domain or in the range of

bi(.), is of degree d.

3. There are at most nd appeal functions that appear in the domain or

in the range of bi(.). Moreover there exists a representative family Li

of no more than nd (n− 1)-tuples of appeals such that for every tuple

ϕ−i that appears in the domain of bi there exists a ψ−i ∈ Li such that

for all (w−i, I−i), bi(((w−i, I−i), ϕ−i)) = bi(((w−i, I−i), ψ−i)).

The assumption that agents’ knowledge is d-bounded is justified by the

immense complexity of the appeal space. It assumes that an agent cannot

think about more than a small family of representative cases Li. For a more

comprehensive discussion on this assumption see [13]. We need an additional

assumption on the appeal class that the agent considers. We will remove

this assumption later on.

Definition 16 (monotonic appeal) We say that an appeal function l(.)

is monotonic if for every w and for every two structures I = (I1, . . . , In)

and I ′ = (I ′1, . . . , I ′n) such that Ij is a subset of I ′j for all j, k(l(w, I ′)) is

at least as good as k(l(w, I ′)).

In other words, giving more information to the appeal can just help it

to compute a better result. We cannot expect the appeals to be monotonic

as such monotonicity usually requires exponential time. However, it is rea-

sonable to think that appeals will be monotonic in general, that is that the

addition of useful information and, in particular, of truthful descriptions,
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usually helps the appeals to improve the overall result. Changing the order

of the dis in the information structures does not affect monotonic appeals.

Definition 17 (monotonic d-obtainable knowledge) Knowledge for

agent i is called monotonic d-obtainable if it is d-obtainable and all the

appeals that appear in its domain or in its range are monotonic.

Theorem 5.1 If the agent’s knowledge is monotonic d-obtainable, she has

a truthful FDA of degree 3 · d.

Proof: Let Ii denote a maximal sequence of useful information that an

agent i can compute (i.e. it contains all the cases that the agent finds

useful). Let bi be a d-obtainable knowledge for agent i. Given (w−i, I−i) we

shall define an appeal li as follows: Let L be the family of all appeals that

appear in the domain or in the range of bi. Let Li be the representative

family. We define ω to denote the set of all the ”useful lies” ω = {wi|∃ψ−i ∈

Li, ϕis.t.(wi, Ii, ϕi) = bi(w−i, I−i, ψ−i)}. Obviously |W |, |L| are bounded by

a polynomial of degree d.

For every pair (wi ∈ ω, l ∈ L) we let li compute the result of l as if she

had submitted (wi, Ii, l), i.e. compute k(l(wi, w−i), (Ii, I−i)). The appeal

returns the best of these allocations according to (vi, w−i).

As all the functions involved are of degree d, it is not difficult to verify

that the appeal is of degree 3 · d.

We now show that submitting (vi, Ii, Li) is an FDA. Otherwise there ex-

ists a triplet (w−i, I−i, l−i) that contradicts bi(.). Since bi(.) is d-obtainable

we can assume that l−i is in the representative family. Let (wi, ιi, δi) =

bi(w−i, I−i, l−i). Because of the monotonicity we can assume that ιi con-

tains all the useful information that i can think of (i.e. ιi = Ii). However

the appeal li checks the case where i submits (wi, Ii, δi). Therefore lis result

must be at least as good as the result of the mechanism in this case – a

contradiction.

106



6 Mechanism3: adding meta-appeals

In section 5 we assumed that the agents’ appeals are monotonic. Our final

step is to get rid of this assumption. We first define the notion of a meta-

appeal.

Definition 18 (meta appeal) A meta appeal is a function that gets a

vector of information structures I = (I1, . . . , In) and returns a list of vectors

of the form I ′ = (I ′1, . . . , I ′n) such that I ′j is a subset of Ij.

In other words, the meta appeals compute a list of alternative informa-

tion structures for the group. Note that many variants of this definition are

possible. We assume that all the meta-appeals are of degree d.

Definition 19 (mechanism3) Given an allocation algorithm k(d), and a

consistency checker for the bidding language we define mechanism3 as fol-

lows:

1. Each agent submits to the mechanism:

• An oracle wi. (let w = (w1, . . . , wn))

• An information structure Ii. (let I = (I1, . . . , In))

• An appeal function of the form li(w, I).

• A meta appeal χi(.).

2. The mechanism computes a list Γ containing all the results of the meta-

appeals as well as the original tuple of information structures I.

3. The mechanism computes, for every pair (lj , I ′) such that I ′ ∈ Γ and lj

is an appeal, the allocation k(lj(w, I ′)). It also computes k(d). It then

chooses among these allocations the one that maximizes the declared

total welfare.
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4. The mechanism calculates the payments according to the VCG formula.

Note that the mechanism is of degree d+ 3.

We can now define d-obtainable knowledge similarly to the previous sec-

tion. We add however the condition that it ignores the meta appeals of the

other agents.

Definition 20 [13] (d-obtainable knowledge of mechanism3) We say

that knowledge bi(.) of mechanism3 is d-obtainable if the following holds:

1. bi(.) is of degree d.

2. bi(.) ignores the meta-appeals of the other agents, i.e it is of the form

bi(w−i, I−i, l−i) = (wi, Ii, li).

3. Every appeal function that appears, in the domain or in the range of

bi(.), is of degree d.

4. There are at most nd appeal functions that appear in the domain or

in the range of bi(.). Moreover there exists a representative family Li

of no more than nd (n− 1)-tuples of appeals such that for every tuple

ϕ−i that appears in the domain of bi(.) there exists a ψ−i ∈ Li such

that for all (w−i, I−i), bi(((w−i, I−i), ϕ−i)) = bi(((w−i, I−i), ψ−i)).

The main justification behind the assumption that bi ignores the meta-

appeals is that the space of meta-appeals is extremely complex. Moreover,

properties of the meta-appeals are only partially connected to the actual

bidding language or the algorithm. The only potential profit from lying

that we can imagine are ”extra-trials” of the allocation algorithm when the

others’ appeals are forced to use the agent’s false description. We presume

that such potential gains are negligible compared to the obvious loss caused

by lying. It is also natural to think that if the appeals of the other agents
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ignore the agent’s recommendation to use d1, they have a good reason to do

so. We argue that knowledge which is not d-obtainable is unlikely to exist.

However, this ”thesis” needs to be checked experimentally.

Theorem 6.1 If the agent’s knowledge is d-obtainable, then she has a truth-

ful FDA (vi, I, li, χi) such that li is of degree 3 · d and χi of degree d.

Proof: Similarly to the proof of 5.1, given (w−i, I−i), we define the set of

”useful lies” ω = {wi|∃ψ−i ∈ Li, ϕis.t.(wi, Ii, ϕi) = bi(w−i, I−i, ψ−i)}, and

the family L of appeals which appear in bi(.). In addition we define the

set of useful information structures χi = {Ii|∃ψ−i ∈ Li, ϕis.t.(wi, Ii, ϕi) =

bi(w−i, I−i, ψ−i)}. We define I to be a union of all I ∈ χi, an appeal li like

in the proof of 5.1. The proof that (vi, I, li, χi) is an FDA is similar to 5.1.

6.1 Example: Mechanism3 with OR bids

Consider mechanism3 for CA with OR bids (section 3). Suppose that Agent1

notices the following phenomena:

1. When all agents perform l∞-approximations the result of k(.) usually

improves considerably.

2. The result also typically improves if agents perform singleton conces-

sions on different items. The improvement however is less significant

than in the first case.

Such an agent may anticipate three kinds of appeals:

• Appeals of agents that notice the first phenomenon and will therefore

leverage from her l∞-approximation.

• Appeals of agents who notice only the second phenomenon and will

only be disturbed by her l∞-approximation.

109



• Appeals that will work best with her valid description.

Mechanism3 gives Agent1 the possibility of constructing a strategy that

will dominate every case that she can think of! She just needs to include

in her meta appeal three information structures. One that includes only her

valid description, one that will include her singleton concessions as well and

one that will also include her l∞-approximation.

We note that there exist additional ways to justify why truth-telling

is the rational strategy for the agents. Those are omitted from the paper

mainly due to space constraints.

7 Other implementation issues

In this section we address two additional issues which a designer may face

when implementing our mechanisms: guaranteeing individual rationality

and forcing reasonable time limitations on the agents.

In [13] it was shown that the allocation algorithm can be transformed

in polynomial time to an algorithm which satisfies additional monotonicity

requirements. With such an algorithm it is possible to define the function

hi(.) of our mechanisms similarly to Clarke’s mechanism [1]. The proof that

the resulting mechanisms satisfy individual rationality is similar to [13].

This paper shows that if enough computational time is given to the

agents, they can construct truthful FDAs. On the other hand the mechanism

needs to find a way to enforce reasonable time limits on the computational

time of the agents, i.e. to enforce time limits on the appeals and meta

appeals. This issue was discussed in [13]. In particular it was suggested that

knowledge-reflecting structure will be chosen for description of the appeal

functions. Such a structure enables the limitation of the computational time

of the appeals according to the agents’ own limitations and thus preserves

the existence of truthful FDAs. We presume that severe limitations can
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be imposed on the length of the lists produced by the meta appeals while

preserving the existence of FDAs. Finally, we think that it is a good heuristic

to charge small fees for extra computational time.

At a first glance our protocols may seem to put a lot of burden on the

agents. However we argue that with the right tools (e.g. tools for building

oracles), mechanisms like ours can become even more ”agent friendly” than

non-revelation mechanisms.

8 Conclusions and further research

In this paper we propose a general way to overcome the deficiencies of VCG

mechanisms with incomplete languages. Given an intermediate language, a

consistency checker, and an algorithm for the computation of the outcomes

(e.g. allocations) we construct three mechanisms, each more powerful but

also more time-consuming than its predecessor. All our mechanisms have

polynomial computational time and satisfy individual rationality.

We adopt the strong concept of feasible dominant strategies of [13] which

is a bounded rationality version of dominant strategies and showed that un-

der reasonable assumptions on the agents’ knowledge, truth-telling is feasibly

dominant for the agents. In addition when an agent lies to the mechanism,

there are cases where she will consequently lose.

When the agents are truth-telling the results of our mechanisms are at

least as good as the mechanisms’ algorithm. Our methods are general and

can be applied to any VCG , weighted VCG or compensation and bonus [14]

mechanism.

The paper assumes that in practice, agents will have only limited knowl-

edge and thus will not be able to do better than their truthful FDAs. This

thesis can and should be checked by experiments with ”real” agents. On

the other hand we feel that this assumption will remain true even when
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severe time limitations are forced on the agents. In fact it will not even be

a surprise if even in a VCG mechanism, if the bidding language and the

allocation algorithm are reasonably designed, the agents will not be able to

do better than truth-telling! This too can be checked experimentally.

Very little is currently known about the revenue of mechanisms for com-

plex problems. In particular note that when a non-optimal VCG mechanism

is naively used for a combinatorial auction, there are even cases where the

mechanism must pay to the agents instead of vice-versa!

In our constructions, there are several tools that the designer must pro-

vide to the agents. Tools to construct oracles, descriptions, appeals etc.

Methods for providing such tools were not discussed in this paper and are

crucial for the success of our mechanisms.

Finally we note that it might be fruitful to explore the possibility of using

appeal functions in situations where the agents have budget limits. When

such limits exist, agents may have incentives to cause others to run out of

budget and it is not likely that dominant strategy mechanisms exist. One

natural way to deal with budget limits, is to truncate the agent’s valuation

to her limit and then use VCG [12]. Truth-telling in this mechanism is a

safe strategy for the agent as she never pays more than her budget. We

argue that appeals of certain forms can play the role of threats and prevent

the worth-willingness of causing others to run out of budget.
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ë�à5ì>Ý§×Ëà»ÛBÚ»ëËë�ã�ì>Ý�Ý%Û�ÙËì ó ã�à'ÞËâiì�� à�íZá�à��BÞËÜ½×ËÜ½×��!Û�ÙËì+Ý�ì?Þ7ì�â½Üiì�í�Ý�Û�Ú�Û�ì+Ýa�Ç�ZÙËì¿ë�ì��»ã�ì�ì\Û�àØ�ÙËÜ½árÙBÛ�ÙËì�í�ãrÚ�?ì�Øhà»ã�ä©á>Ú ó Û�çËã�ì>Ý�à»çËã�Üi×:Û�çËÜdÛ�Üià'×¼Ý)Ü½×ÆÝ ó ì+á�Ü�rRá�ëËà	�¿Ú�Ü½×¼Ý�ë�ì>Ý�ì�ã�ö»ì+ÝCí�çËã�Û�ÙËì>ãã�ì+Ý�ì+Ú�ãrárÙ��

�µÛ�ÙËì>ã�ã�ì>â½Ú�Û�ì>ë\ã�ì>Ý�ì>Ú»ã�árÙÆÜi×¼á�âiçRë�ìBï ÃSòRØ�ÙËÜ�árÙ¿Ú óËó ã�à:Ú»árÙËì+Ý�Ü½×�í�à'ãR�¿ÚSÛ�Üià'×\Ú	�	�'ã�ì��'ÚSÛ�Üià'×í�ã�à��^Ú ó à'Ý�Ý�ÜiÞËÜ½â½Ü½Ý�Û�Ü�á!âià��»Ü�á ó à»Ü½×:Û à�íµö5Ü½ì�Ø�åZÚ�×¼ë1Ý�ì>ö»ì>ã�Ú»â ó Ú ó ì>ã�Ý\Ü½×1Ú�Ý ó ì+á�Ü�Ú�â�Ü�Ý�Ý�çËìà�í�ì7û¼ürýSþ#�^� ïið(í/òµØ�ÙËÜ�árÙ1Ú»â½Ý�à Ý�ì>ì�ä Û�à ì<y5Û�ì>×¼ëÂÛ�ÙËìÅæ¹é§î�í�ãrÚ�?ì�Øhà»ã�ä�Û�à ë�ì+Ú�â¹Ø�ÜiÛ�Ù
×Ëà»×M� ó ã�Üià'ã�ÜiÛ�Ü���ì+ë ã�ì�ö5Ü�Ý�Ü½à»×��

î ïð«�ñ>Õ<«;òóò»Ó�¯)Õ�ÑÆÎ
Ø�Ü½ãrÝUÛ+å:Ú�Þ¼ÜdÛhà�í�ÝUÛrÚ�×¼ë¼Ú�ãrëÆ×¼à�Û�Ú�Û�Ü½à»×���x�ì%Ú»Ý�Ý�ç��?ì¹Ý�à��\ìµâ½Ú»×��»ç¼Ú	�»ì À ��æ=Ø�à'ã�â�ë�ô=Ü½ÝhÚ�×
Üi×:Û�ì>ã ó ã�ì�Û�ÚSÛ�Üià'×�àSö»ì>ã À å»Ú�×Rë�ØhìhÝ�Ú/ß©Û�Ù¼Ú�Û�í�à'ã�Ú%Ý�ì�×:Û�ì>×¼á�ì�¿oË À åôpõ öI¿ÆÜ�¥/¿Æì>öSÚ�â½ç¼ÚSÛ�ì>ÝÛ�à%Û�ã�çËì�Ü½×�ô/��é©Üiö'ì�×ÆÚ©Ý�ì�Û)à�í¼Øhà»ã�â½ë¼ÝFÅ Ú»×¼ëBÚ©Ý�ì�×:Û�ì>×¼á�ì�¿"åD÷�¿�÷*öùø(ôùË�ÅÌõ!ôpõ öj¿8ú��
Ö�íT¿WÚ�×¼ë�û�Ú�ã�ì¹Ý�ì�×:Û�ì>×¼á�ì+Ý�å»Û�ÙËì>×e¿�õ ößû§Üs¥�ücôùËI÷£¿H÷3È�ôýõ öþûT��æ¹â�Ý�à¼å»Ü½×?Û�Ù¼ì¹Û�ã�ì>Ú�ÛR�?ì�×:Û
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Û�Ù¼Ú�ÛÆí�à'âiâ½àSØ¹ÝBØhì��?Ú»ä»ìWç¼Ý�ì!à�í©ÚÀ×5ç��ÆÞRì>ã\à»í�u ó ã�ìa�£wUà»ãrë�ì�ãrÝa� é©Ü½ö»ì�×1ÚPÝ�ì�Û�ÿ Ú»×¼ëLÚ
u ó ã�ì<��w}à'ã�ë�ì>ã��FàSö»ì>ã�ÿÆå�Ø�ì�ë�ìar¼×Ëìt�?Üi×�u��eÈ#ÿtw1öÁø��IË¦ÿpõ�ü��ÛË¦ÿ�È����	��ú��
Ä�ì�Û�ç¼Ý�Ý�Û�Ú»ã�Û�Þ5ßÆí�à»ã��?Ú»âiâ½ßÆëËì<r¼×ËÜ½×���Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì>Ý���Ø¼à»ã�ã�ì>Ú'Ý�à'×¼Ý�Û�ÙRÚSÛ�Ø�Ü½âiâRÞRìÂ�¿Ú»ë�ì

á�â½ì>Ú�ã+å�Øhì§Ý�Ù¼Ú»âiâ�á>Ú�â½âHÛ�ÙËì��º�3�Hý3�Rÿ3�?ý�T��Þ7ì�â½Üiì�í�Ý�Û�Ú�Û�ì+Ýa�

�����������������F÷Â��u¬Ú�×Ëà'×:ßT�?à»çRÝ�w)Þ7ì�â½Ü½ì�í"Ý�Û�ÚSÛ�ì�u-àSö»ì�ãNÅùwÂ�L�k���D�3� þtu^Å È���w���û¼ü�þ�ü=Å
�L�/�Ç��ü�ú�ý��N�¼ý!�4�#�^�<�½ü���ýSþ#���3�/��c���ª�L�/� ú�ý�úX��T�7þ�ü<��ý�þR�»ü�þÆý3�Sü�þ;ÅªÓ
xPì?ç¼Ý�ì��	Û�àQë�ì�×Ëà»Û�ìÆÛ�ÙËì¿Ý�Û�ã�Ü½á�Û©ö'ì�ãrÝ�Ü½à»×Àà�í��e��Ö}×PÛ�ÙËÜ�Ý§Ú�ã�Û�Ü�á�â½ìBÛ�ÙËì?Ý�ì�ÛeÅ Ø�Ü½â½â�×¼à�Û
ó â½Ú/ß�Ú¯ã�à»â½ì»å�Ú»×¼ë á�Ú»× ÞRìWÚ»Ý�Ý�ç��?ì+ëÀÛ�àÅÞ7ìÇr�y�ì>ëB��x�ìWë�ì>×Ëà�Û�ì¿Þ5ß��� ¿Û�ÙËì¦ÔªÚ�'×Ëà'Ý�Û�Ü�á
ÞRì>âiÜ½ì�í�ÝUÛrÚSÛ�ì»åËÜ½×QØ�ÙËÜ½árÙ!�3Ü½ÝhÛ�ÙËì�á�à�� ó âiì�Û�ì�ã�ì�â�ÚSÛ�Ü½à»×8�

�"à�r¼ãrÝUÛ�Ú óËó ã�à!y�Ü��?Ú�Û�Ü½à»×�å'Û�Ù¼ì©Þ7ì�â½Ü½ì�í"í�çRÝ�Ü½à»×!à ó ì�ãrÚSÛ�à»ã�Øhì§Ø�Üiâ½âCë�ì<rR×Ëì�Ú»á�á�ì ó ÛrÝ�ÛUØ�àÞRì>âiÜ½ì�í§ÝUÛrÚSÛ�ì+ÝÆÚ»×¼ë ó ã�à�ë�ç¼á�ì>Ý\ÚÅÛ�ÙËÜiãrëB�j�¹àSØhì�ö'ì�ã+å)Üi×Âà»ãrë�ì�ãBí�à»ãÆÛ�ÙËì!à ó ì�ãrÚSÛ�à»ã�Û�àPÞ7ì
�\ì+Ú�×ËÜ½×��»í�çËâ¬å�ÜdÛÆØ�Üiâ½â�ã�ì�q:çËÜ½ã�ì?Ú»ëËëËÜdÛ�Üià'×¼Ú�â�Ü½× ó çËÛ>å�Ø�ÙËÜ½árÙ"å"Ü½×'Û�çËÜiÛ�Ü½ö»ì�â½ß»å�Ø�Üiâ½â�Ú'ë!ÚUç¼ë�Ü�á�Ú�Û�ìÞRì�ÛUØ�ì>ì�×!Û�ÙËì§ÛUØhà\ÞRì>âiÜ½ì�í�Ý�Û�ÚSÛ�ì>ÝZØ�ÙËì>ã�ì©Û�ÙËì�ß!ë�Ü½Ý�Ú�'ã�ì>ì	�
Ö�ÛµÜ½Ý¹Û�ì�� ó Û�Ü½×�� Û�à ã�ì+Ý�à'âiö'ì�á�à»×�é¼Ü½á�Û�ÝµÞ:ßQë�ì+á�â�Ú�ã�Üi×��¿à'×Ëì�Ú�'ì�×:Û�u#"�w=�?à»ã�ìBá�ã�ì+ë�ÜiÞ¼âiìÛ�Ù¼Ú»×�Û�ÙËì à»Û�ÙËì>ã�u�$kw�Ú�×Rë�Ù¼Ú/ö»ì?ÙËÜ�Ý*ÚUç¼ë��	�?ì�×:Û�ÝBë�à	�?Ü½×¼ÚSÛ�ì	�o� ó ì+á�Ü�rRá�Ú»âiâ½ß»å�à»×¼ì�á�à'çËâ½ëë�ì<r¼×¼ì�í�ç¼Ý�ì>ëLÞRì>âiÜ½ì�í©ÝUÛrÚSÛ�ì%$'&)(*" Û�àPÞRìWÛ�ÙËì�þ�ü�Ð1�Hü<�¿ü<�Rú�à»í�" Þ5ß+$/�j�µì�ã�ìWÜ�Ý�Û�ÙËì

ë�ì<r¼×¼ÜdÛ�Üià'×!à»í�Û�ÙËÜ�Ý�ÝUÛ�ã�Ú/Ø=�X�¿Ú�× í�çRÝ�Ü½à»×Qà ó ì�ãrÚSÛ�à»ã+å,&(.-�
$/& ( - "pöêøhu^ô � È�ô × wb�

uæô × È�ô � w10Ë2"3(�u�u^ô � ÈRô × w=Ë2"34�u^ô × ÈRô � w50Ë6$Âw#ú87
Ö}×�à»Û�ÙËì>ã�Øhà»ãrëËÝ�å"Ø�ì?Øhà»çËâ�ë�á�à»×RÝUÛ�ã�ç¼á�Û§Û�ÙËì¿í�çRÝ�ì+ëPÞ7ì�â½Ü½ì�í¹ÝUÛrÚSÛ�ì Ú»Ý©í�à»â½â½àSØ¹Ýa�§í�à'ã�ì>Ú»árÙ
ó Ú�Ü½ã�à�íhØ�à'ã�â�ëËÝ>åCØ�ÙËì�×Ëì>ö»ì>ã%Û�ÙËìÇ�?à»ã�ì\á�ã�ì+ë�Ü½ÞËâiì¿Ú	�»ì�×:Û�ÝUÛ�ã�Ü�áÛ�âiß ó ã�ì�í�ì�ãrÝ§à»×Ëì\Øhà»ã�â½ëÅÛ�àÛ�ÙËì�à»Û�ÙËì>ã>å¼Ø�ì�Ý�Ü½ëËì�Ø�ÜdÛ�ÙQÛ�ÙËÜ�Ý ó ã�ì�í�ì>ã�ì>×¼á�ì���Ö}×Åá�Ú'Ý�ì+ÝZØ�ÙËì�ã�ì§Û�ÙËìe�?à:ÝUÛµá�ã�ì+ë�ÜiÞ¼âiì�Ú	�»ì�×:ÛÙ¼Ú»Ý©×Ëà ó ã�ì�í�ì�ã�ì�×Rá�ì»åCØhì\í�à»â½âiàSØ	Û�ÙËì?ãrÚ�×Ëä5Ü½×���à»í�Û�ÙËì?â½ì>Ý�Ý�á�ã�ì>ë�Ü½ÞËâ½ì\Ú	�»ì>×'Û(�%�µÚ�Û�çËãrÚ�â½â½ß»å& (.-BÜ½Ý©×Ëà»Û�Ú�Ý�ßh���?ì�Û�ã�Ü�áÆà ó ì�ãrÚSÛ�à'ã��e�ZÙËÜ�Ý©à ó ì�ãrÚSÛ�à»ã©Ü½Ý©Ü½âiâ½ç¼Ý�Û�ãrÚSÛ�ì+ëÅÜ½×�Ø�Ü��»çËã�ìWð��/�ZÙËìë�à�ÛrÝ�â�Ú�Þ7ì�â½ì>ë�Ø�ÜdÛ�Ù�â½àSØ�ì>ã��}á�Ú'Ý�ìZâ½ì�Û�Û�ì�ãrÝZÚ�ã�ì¹Ø�à'ã�â�ëËÝ��»Û�ÙËì§á�Ü½ã�á�âiì+Ý�ã�ì ó ã�ì>Ý�ì�×:Û�ì(q:çËÜiöSÚ»âiì>×¼á�ìá�â�Ú»Ý�Ý�ì+Ý�à»í�Øhà»ã�â�ëËÝa�

Ø�Ü��»ç¼ã�ìPð	�²�ZÙ¼ìWÝ�Û�ãrÚ/Ø=�&�¿Ú�× í�ç¼Ý�Ü½à»×Âà ó ì�ãrÚSÛ�à»ã²u-ÞRì>âiÜ½ì�í§Ý�ì�Û�Ý\Ü½×Lì>Ú'árÙ Þ7ì�â½Üiì�í©Ý�Û�ÚSÛ�ìWÚ»ã�ìÙËÜ��'ÙËâ½Ü��'Ù'Û�ì>ëDw<�

�ZÙËÜ½Ý¹Ü½Ý%Ú?Ø�ì>âiâ���ëËì<r¼×Ëì+ë!à ó ì�ãrÚSÛ�Ü½à»×QÜ½×!Û�Ù¼Ú�ÛµÜdÛ ó ã�à�ë�çRá�ì>ÝµÚ\Û�à�ÛrÚ�â ó ã�ìa�;à'ã�ëËì�ã(�1�¹àSØ=�ì�ö»ì>ã>å�Û�ÙËì>ã�ì?Ü�Ý�Ú ó ã�à'ÞËâ½ìa� Ø�ÜiÛ�Ù�Û�ÙËÜ½Ý�ëËì<r¼×ËÜiÛ�Ü½à»× ó ì�ã�Û�Ú»Üi×¼Üi×��!Û�àWÛ�ÙËì¿ÜiÛ�ì�ãrÚSÛ�Üià'×Pà»í�Û�ÙËì
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à ó ì�ãrÚSÛ�à'ã���Í�à»×¼Ý�Ü�ë�ì�ã�Û�ÙËã�ì�ì¹Þ7ì�â½Üiì�í"ÝUÛrÚSÛ�ì>Ý�æBå�91Ú�×Rë�Í Ø�ÜiÛ�Ù�Üi×¼á�ã�ì+Ú»Ý�Üi×D��à»ãrë�ì�ã�à»í�ë�à	���Üi×¼Ú»×¼á�ì�u-æ ë�à��\Ü½×¼Ú�Û�ì>ëÀÞ5ß:9%åCÚ»×¼ë¯Þ7à�Û�Ù�Þ5ß�Í=w#��ë�ã�ì>Ý�ç��¿Ú�Þ¼âiß'å¼Û�ÙËì\Ú»ÞRàSö'ìÆë�ìar¼×ËÜiÛ�Ü½à»×
Ø�à'çËâ½ëÎ�»Ü½ö»ì��?ì+Ú�×ËÜ½×���í�ç¼âRÜ½×:Û�ì�ã ó ã�ì�ÛrÚSÛ�Ü½à»× Û�à²u#$!& (.-;"�w<& (.-�=\å5Ý�Ü½×¼á�ì'å:Ü½×:Û�çËÜiÛ�Ü½ö»ì>âiß¿Ý ó ì+Ú�äh�Üi×��Rå�Ú»âiâZÛ�ÙËìQÜi×�í�à'ãR�¿Ú�Û�Ü½à»×LÜ½×>= ë�à��\Ü½×¼Ú�Û�ì>Ý¿Ú»âiâhÛ�ÙËìQÜi×�í�à'ãR�¿Ú�Û�Ü½à»×1Üi×?$�&@(.-;"Î�?9hç�Û
Ø�Ù¼ÚSÛ�Ú�Þ7à»ç�Û�u�$>&A(.-�=ew�&A(.-;"CBþ�µì�ã�ìBÜiÛ©Øhà»çËâ�ëÅÝ�ì�ì�� Û�Ù¼ÚSÛ�Ý�à	�?ìBà»í�Û�ÙËì\Ü½×�í�à»ã��¿ÚSÛ�Ü½à»×
Üi×D$?&E(F-�= ë�à	�?Ü½×¼ÚSÛ�ì>Ý¹Û�ÙËì\Üi×Ëí�à»ã��?Ú�Û�Ü½à»×¯Ü½×D" u-ÞRì+á�Ú»ç¼Ý�ìBÜdÛ©à»ã�Ü��'Üi×¼Ú�Û�ì+ë!í�ã�à��G=ew%Ú�×¼ë
Ý�à��\ì§Ü�Ý¹ë�à��\Ü½×¼Ú�Û�ì>ëWÞ5ß ÜiÛ%u�Þ7ì>á�Ú»ç¼Ý�ì�ÜdÛ¹à'ã�Ü��»Ü½×¼ÚSÛ�ì>ë í�ã�à��H$Âw<�

�ZÙËì ó ã�à»ÞËâ½ìa� Ü½Ý�Û�Ù¼Ú�Û�Û�ÙËìµÝ�Û�Ú�×RëËÚ�ãrë?ÞRì>âiÜ½ì�í�Ý�Û�Ú�Û�ì¹Ü�Ý�×Ëà»Û�ã�Ü½árÙ?ì>×Ëà»ç��'Ù?Û�à�ã�ì ó ã�ì+Ý�ì>×'ÛÛ�ÙËì�Ý�à»çËãrá�ì�à�í¼ì+Ú»árÙBÜ½×�í�à'ãR�¿ÚSÛ�Üià'×BÜiÛ�ì��!å»Ø�ÙËÜ½árÙÆÜ½Ý�Û�ÙËìZã�ì+Ú»Ý�à»×�ØhìhÛ�ì�ã���ÜiÛbÔªÚ�×¼à»×5ßT�\à'ç¼Ý�
��
�%çËãWÚ'áÛ�çRÚ�â%ëËì<r¼×ËÜiÛ�Ü½à»×FØ�Üiâ½â%ì>×Ëã�Ü½árÙ=Þ7ì�â½Ü½ì�íBÝ�Û�ÚSÛ�ì>Ý�Ø�ÜdÛ�Ù=Û�Ù¼Ü½Ý²�?Ü½Ý�Ý�Ü½×�� Ü½×�í�à'ãR�¿ÚSÛ�Üià'×��
�"à!ë�ì�ö'ì�â½à ó Ü½×:Û�çËÜiÛ�Ü½à»×Àí�à»ã%Û�ÙËìÆí�à»â½âiàSØ�Ü½×���ëËì<r¼×ËÜiÛ�Ü½à»×RÝ�åCÜ��¿Ú�»Ü½×Ëì\Ú�Ý�ì�Û§à�í�Ü½×�í�à»ã��¿ÚSÛ�Ü½à»×Ý�à'çËã�á�ì>Ý�Ú»×¼ë¯Ú¿Ý�ì�Ûµà�í�Ú	�»ì�×:ÛrÝa�b�ZÙËìBÝ�à»çËãrá�ì+Ý�á�Ú�×QÞ7ì�Û�ÙËà»ç��'Ù:Û¹à�í�Ú»Ý ó ã�Ü��?ÜdÛ�Üiö'ìBÚ�'ì�×:Û�ÝØ�ÜdÛ�Ù�r�y�ì>ëou-Ú»×Ëà»×5ßT�?à»ç¼Ý4w�Þ7ì�â½Üiì�í"ÝUÛrÚSÛ�ì+Ýa�Hç�Ú'árÙ¿Ý�à'çËã�á�ì�Üi×Ëí�à»ã��?Ý�Ý�à��\ì�à»íHÛ�ÙËì©Ú�»ì>×:Û�Ý)à�í
ÜdÛrÝµÞ7ì�â½Üiì�í�Ý�Û�ÚSÛ�ì	�HÜ½×Åì<¥Hì>á�Û>åCì>Ú'árÙÅÝ�à'çËãrá�ì�à	¥7ì>ã�Ý¹Û�ÙËìÆà ó Ü½×ËÜ½à»×¯Û�Ù¼ÚSÛ§á�ì�ã�Û�Ú»Üi×ÀØ�à'ã�â�ëËÝ¹Ú»ã�ì
�\à'ã�ì§â½Üiä'ì�â½ß¿Û�ÙRÚ�×Qà�Û�ÙËì�ãrÝ�å�Ú»×¼ë!ã�ì��?Ú»Üi×RÝZ×Ëì�ç�Û�ã�Ú»â�Ú�Þ7à»ç�Û�à»Û�ÙËì>ã ó Ú�Ü½ã�Ý��æ¹×?Ú�»ì>×:Û�
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�ZÙËì©í�à»â½âiàSØ�Ü½×��¿ë�ì<rR×ËÜdÛ�Üià'×¯á�à»×RÝ�Ü�ë�ì�ãrÝhà»×Ëâ½ßÇr¼×¼ÜdÛ�ì�Ý�ì�Û�Ý�à»í�Ý�à»çËãrá�ì+Ýa�:Û�Ù¼Ü½Ý�ã�ì>Ý�Û�ã�Ü�áÛ�Ü½à»×
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ú ûD�Sú
O�uæô � ÈRô × w7öùøhu^Å È���wbË2Kè�ô � �èô × úa`�øb�  úMÓ
xPì?Ø�Ü½âiâ)ç¼Ý�ìcM Û�àQë�ì�×¼à�Û�ìÆÛ�Ù¼ì?Ý�ì�Û§à�íhÚ�â½â�à»í�Ý�à»çËãrá�ì+ÝµàSö'ì�ãÂÅ å�Ú»×¼ë¯Û�ÙËã�à'ç��»Ù¼à»ç�Û%Û�ÙËÜ�Ý
ó Ú ó ì�ã\Ø�ì!Ø�Ü½âiâ�á�à'×¼Ý�Ü½ë�ì>ã ó ì>ë�Ü��»ã�ì�ì+ë Þ7ì�â½Üiì�í%Ý�Û�ÚSÛ�ì>ÝÆÛ�ÙRÚSÛ¿Ú�ã�ì Üi×Rë�ç¼á�ì+ë Þ5ß Ý�çËÞ¼Ý�ì�Û�ÝÆà�íM��¦�¹à»Û�ì¿Û�Ù¼ÚSÛBÞ7à�Û�Ùþø	ú�Ú»×¼ë���  Ü½×¼ë�ç¼á�ì¿Û�ÙËì!Ý�Ú	�?ì ó ì+ë�Ü��'ã�ì>ì>ë�Þ7ì�â½Üiì�í¹ÝUÛrÚSÛ�ì���Ø�ì�Ø�Üiâ½âë�ì�×Ëà»Û�ì ÜiÛBÛ�à5àÅÞ5ß!d  �¦Ø�Ü½×¼Ú»âiâ½ß»å)Øhì Ø�Üiâ½âhç¼Ý�ì�d8e*fhg!Û�àÀë�ì>×Ëà�Û�ì Û�ÙËì ó ì>ë�Ü��»ã�ì�ì+ë�ÞRì>âiÜ½ì�íÝUÛrÚSÛ�ì§Ü½×¼ë�ç¼á�ì>ë!Þ5ßiM��

�¹ì<y5Û¹Øhì�ë�ì<r¼×¼ì�Ú ó Ú�ã�Û�Ü�á�çËâ�Ú�ã ó à»â½Ü½á�ß í�à'ã�ã�ì+Ý�à'âiö5Ü½×��\á�à»×MéRÜ½á�Û�Ý�Ø�ÜiÛ�ÙËÜ½×¯Ú ó ì+ë�Ü��»ã�ì�ì>ëÞRì>âiÜ½ì�í�Ý�Û�Ú�Û�ì��;xPì\Ú»Ý�Ý�çD�\ìÆÚ ÝUÛ�ã�Ü�áÛ©ã�Ú»×Ëä5Üi×D�:j à'×6MÉu¬Ú�×¼ëQÛ�Ù5ç¼Ý%Ú»â½Ý�à¿à»×ÅÛ�ÙËì\Ý�à'çËã�á�ì>Ý
Û�Ù¼Ú�Û!Ü½×¼ë�ç¼á�ì�Ú»×5ß ó Ú�ã�Û�Ü�á�çËâ�Ú�ã:Otw#�§Û�ÙËì�Ý�Û�ã�Ü�áÛ�×¼ì>Ý�ÝWà»í�Û�ÙËì�ãrÚ�×Ëä5Ü½×�� Ü�ÝQÚLÝ�Ü��'×ËÜsr7á�Ú�×:Ûã�ì+ÝUÛ�ã�Ü�áÛ�Üià'×WÛ�Ù¼ÚSÛ%Ø�ì�ë�Ü�Ý�á�ç¼Ý�Ý�í�çËã�Û�Ù¼ì�ã¹Ü½×¯Û�Ù¼ìer¼×¼Ú»â"Ý�ì+áÛ�Üià'×��=xPì�Ü½×:Û�ì>ã ó ã�ì�Û5� � jJ� × Ú»ÝÔE� × Ü½Ýk�?à»ã�ìÆá�ã�ì+ë�Ü½ÞËâiìÆÛ�ÙRÚ�×+� � 
��ÆæµÝ©ç¼Ý�ç¼Ú�â;åCØ�ì?ë�ìar¼×Ëì2k�åHã�ì+Ú»ë=ô�Ú»Ý©á�ã�ì>ë�Ü½ÞËâ½ì\Ú'Ý�õ¼åCÚ»ÝÛ�ÙËì�ã�ì<é¼ìay�Üiö'ì©á�âià:Ý�çËã�ì§à�íljt�

xPì\Ú�â�Ý�à�Ú'Ý�Ý�ç��?ì�Û�Ù¼ÚSÛm�� BÜ�Ý¹Û�ÙËìÆâ½ì>Ú'ÝUÛ©á�ã�ì>ë�Ü½ÞËâ½ìÆÝ�à»çËãrá�ì'å¼Ø�ÙËÜ�árÙ¦�¿Ú/ß��\ì>ã�ÜiÛ©Ý�à	�?ì
ì<y ó â�Ú�×¼Ú�Û�Ü½à»×��§Ö�Ût�\Ü��»Ù:Û§ÞRì?Ú»Ý�ä»ì+ë¯Ø�Ù5ß¯ì�q:ç¼Ú�Û�ì�Û�ÙËì��?à'Ý�Û©Ú�'×Ëà'Ý�Û�Ü�áBÝ�à»ç¼ã�á�ìBØ�ÜiÛ�ÙÅÛ�ÙËì
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âiì+Ú»Ý�ÛÆá�ã�ì>ë�Ü½ÞËâ½ì¿à»×Ëì��QÖ}×�í-Ú»áÛÆØ�ì�ëËà»×�
 ÛBÙ¼Ú/ö'ì?Û�à¼å)ÞËçËÛÆÝ�Ü½×¼á�ì Üi× Û�ÙËì�ëËì<r¼×ËÜiÛ�Ü½à»×RÝ�Û�ÙRÚSÛ
í�à»â½âiàSØ�åSÚ�'×Ëà'Ý�Û�Ü�á�Ü�ÝR�FÜ�Ý"àSö'ì�ã�ã�Ü�ëËë�ì>×©Þ5ß�Ú�×5ß©à ó Ü½×ËÜ½à»×�ã�ìa�:Ú�ãrë�â½ì>Ý�ÝHà�í¼á�ã�ì>ëËÜiÞËÜ½â½ÜdÛUß§ãrÚ�×Ëä5Ü½×��¼åØ�ìe�?Ü��»Ù:ÛµÚ»Ý�Øhì�â½â"Ú'Ý�Ý�ç��?ì§Û�Ù¼Ú�Û%Ú�â½â"Ú	�»×Ëà:ÝUÛ�Ü½á�Ü½ÝR� à»ã�Ü��»Ü½×¼ÚSÛ�ì>Ýhí�ã�à	� Û�ÙËì�â½ì>Ú'ÝUÛµá�ã�ì+ë�ÜiÞ¼âiì
Ý�à'çËã�á�ì»å5Ø�ÙËÜ�árÙQØ�Üiâ½â ó ì�ã��\ÜiÛµÝ�Ü�� ó â½ì�ã¹ë�ìar¼×ËÜiÛ�Ü½à»×¼Ý��Ö}×'Û�çËÜiÛ�Ü½ö»ì�â½ß»åÂ�»Ü½ö»ì>×FÚ ó ì>ëËÜ��'ã�ì>ì>ë=Þ7ì�â½Ü½ì�í\Ý�Û�Ú�Û�ì�OÆå�OCn Ø�Üiâ½â§ã�ì�Û�Ú�Ü½×Aí�ã�à	�oO Û�ÙËì
ÙËÜ��'ÙËì>Ý�Û���ãrÚ�×Ëä'ì>ë à ó Ü½×ËÜià'×!Ú»ÞRà'ç�Û�Û�Ù¼ì�ã�ì>â½Ú�Û�Ü½ö»ì©âiÜ½ä»ì>âiÜ½ÙËà5à�ë�Þ7ì�ÛUØhì�ì>×QÚ»×5ß¿ÛUØ�à\Øhà»ã�â½ëËÝ��

���������������>p øb���Süa��ÅÉÒ�M;ÒqO �3�C�CjÉ�!�k����ý�/ü<Ò�ú û¼ühë�à	�?Ü½×¼ÚSÛ�Üi×��BÞRì>âiÜ½ì�í"Ý�Û�Ú�Û�ì¿ý���O
�L�%ú�ûËü��4�M�C��ú&�-ý3��O n �	ÅQP�ÅrRTsKþ�#�D�rûWú ûD�Súcücô � È�ô × Ë�Å ú û¼ü���ý3���½ýt�����h�?ûËý���!�;ulvæ�
�?Úy�uwO�uæô × È�ô � wRwcjù�¿ÚyBuxO�uæô � È�ô × wRw¿ú�ûËüa�NO n uæô � È�ô × wtöÉ�¿Ú3y�uwO�u^ô � È�ô × w�waÓ�yZú ûM�ü�þz���L��ü<Ò�O n uæô � È�ô × wNöJ�� hÓ {

Í�âiì+Ú�ã�âiß'å�í�à»ã©Ú�×5ß²ô � È�ô × Ë�Å ì�ÜiÛ�ÙËì>ã�OCn1uæô � È�ô × wbö|�  à'ã�OCn1u^ô × È�ô � wbö}�  à»ãÞRà»Û�Ù��
�5à	�?ì�Ø�ÙRÚSÛ¹Ý�ç¼ã ó ã�Ü�Ý�Ü½×��»â½ß»å,O n Üi×Rë�ç¼á�ì+Ý¹Ú?ÝUÛrÚ�×¼ë¼Ú�ãrë�u¬Ú�×Ëà'×:ßT�?à»çRÝ�w�ÞRì>âiÜ½ì�í�Ý�Û�Ú�Û�ì	�


���������������?~ ì7û¼ü\à»ãrë�ì�ã�Ü½×��¯Üi×Rë�ç¼á�ì+ë Þ5ß�OCnp�L� ú�ûËü!þ�üa���Sú&�-ý3�vÆ��þÅ�PÛÅ �4�D�rû
ú ûD�Sú�ô � Æ¢ô × � ¤�OCn1uæô × ÈRô � w1ö'�  Ó
xPì�ë�ì>×Ëà�Û�ì§Û�ÙËì�Ý�Û�ã�Ü�áÛ�ö»ì>ã�Ý�Üià'×�à»íbÆ Þ:ßD�e�
���b�<�F���������#�<�'�ùÆ �L�/� ú�ý�úX��T�7þ�ü<��ý�þR�»ü�þÆý3�²ÅªÓ

�ZÙ:çRÝ Ú ë�à	�?Ü½×¼ÚSÛ�Üi×D� ÞRì>âiÜ½ì�í�Ý�Û�ÚSÛ�ì¯Ü½ÝWÚÛ�»ì>×Ëì�ãrÚ�â½Ü��+ÚSÛ�Üià'×Là�í©Û�Ù¼ìÀÝUÛrÚ�×¼ë¼Ú�ãrëL×Ëà»Û�Ü½à»×�à�í
u-Ú�×¼à»×5ßT�\à'ç¼Ý4w�Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì»å�ã�ì ó ã�ì>Ý�ì�×:Û�Ü½×��\Û�Ù¼ì�Ú�»ì>×:Û�
 ÝZà»ãrë�ì�ã�Üi×D�Æà'×!Øhà»ã�â�ëËÝhÞ¼Ú»Ý�ì>ë!à»×Û�ÙËìZÚ�'ì�×:Û�
 Ý�à ó Üi×¼Üià'×�à�í�Û�ÙËì�Ü½ã�ã�ì�â�ÚSÛ�Üiö'ì�â½Üiä'ì�â½ÜiÙ¼à:à�ë�Ú'Ý"Øhì�â½â:Ú'Ý"Ø�Ù¼Ü½árÙBÝ�à»ç¼ã�á�ì�Û�ÙËìhà ó Üi×ËÜ½à»×à»ã�Ü��'Üi×¼Ú�Û�ì+ë í�ã�à	���*�¹àSØ�åËÜií�Û�Ù¼ìBÚ�'ì�×:Û¹â½Ú�Û�ì>ã¹Üi×:Û�ì�ãrÚ»áÛrÝ�Ø�ÜiÛ�ÙÅÚ�×¼à�Û�Ù¼ì�ãµÚ	�»ì�×:ÛµÚ»×¼ëWÛ�ÙËì>ß
ë�Ü½Ý�Ú�'ã�ì>ì�àSö»ì>ã�Ý�à��?ì ó Ü½ì>á�ì%à�í�Ü½×�í�à»ã��¿ÚSÛ�Üià'×�å'Ü½×:Û�çËÜiÛ�Ü½ö»ì>âiß\Û�ÙËì�ß¿á�Ú»×¿ã�ì+Ý�à'âiö'ìZÛ�ÙËì©á�à'×Mé¼Ü�áÛÞ¼Ú»Ý�ì>ëWà»×!Ø�ÙËà¿Ù¼Ú'ÝhÛ�ÙËì�Ý�Û�ã�à»×��'ì�ã�Ý�ç óËó à»ã�Û��

�ZÙËìBí�çRÝ�Ü½à»×�à ó ì�ãrÚSÛ�à»ãµØhì¿ë�ì<rR×Ëì\á>Ú ó Û�çËã�ì>Ý%Û�ÙËÜ�Ý§Ü½×'Û�çËÜiÛ�Ü½à»×���xPì�r¼ãrÝUÛt�»Ü½ö»ì\Ú!ö»ì�ã�ß×¼ÚSÛ�çËã�Ú»âCë�ì<r¼×¼ÜdÛ�Üià'× í�à»ãhÛ�ÙËì©í�ç¼Ý�Ü½à»×Wà�í�ÛUØhà ó ì+ë�Ü��'ã�ì>ì>ë¿Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì+ÝlO � Ú»×¼ë%O × Þ¼Ú»Ý�ì>ëà»×QÛ�Ù¼ì�Ü½ãµã�ì>Ý ó ì+áÛ�Ü½ö»ìÆÝ�ì�Û�Ý¹à»í�Ý�ç ó¼ó à'ã�Û�Üi×��WÝ�à'çËã�á�ì>Ý���Øhì�Ý�Ü�� ó â½ßQá�à	�ÆÞËÜi×¼ì�Û�ÙËì����;�ZÙËì�×Ø�ì?Ý�Ù¼àSØ�Û�Ù¼Ú�Û©ÜiÛ�Ü½Ý ó à'Ý�Ý�ÜiÞËâ½ìÆÛ�àQá�à	� ó çËÛ�ì\Û�ÙËì?×Ëì>Ø ó ì>ë�Ü��»ã�ì�ì+ëÅÞ7ì�â½Üiì�íhÝ�Û�ÚSÛ�ì¿ë�Üiã�ì>á�Û�â½ßÜi×AÛ�ì�ã��¿Ý�à»í�Û�ÙËì�O � Ú»×¼ë'O × Ø�ÜiÛ�Ù¼à»ç�Û!×Ëì�ì+ë�Üi×D� Û�àÂã�ì�í�ì�ã�Û�à Û�ÙËì�Ý�ì�Û�ÝWà�íBÝ�à»çËãrá�ì+Ýa�ØËçËã�Û�ÙËì>ãR�?à'ã�ì'å:Øhì§Ý�ÙËàSØFÙËàSØAÛ�à?ë�ì�Û�ì�ã��?Üi×¼ì%Û�ÙËì§×Ëì�Ø3ë�à	�?Ü½×¼ÚSÛ�Üi×D�ÆÞ7ì�â½Üiì�í�Ý�Û�Ú�Û�ì§Þ¼Ú»Ý�ì>ë
à»×!Û�ÙËà:Ý�ì�Ú'Ý�Ý�à�á�Ü�ÚSÛ�ì+ë Ø�ÜiÛ�ÙNO � Ú�×Rë6O × ��æµÝ�ÜiÛ�Û�ç¼ã�×¼Ý¹à»ç�Û+å�Û�ÙËì�ã�ì>Ý�çËâiÛ�Ø�Üiâ½â��¿ÚSÛrárÙWÛ�ÙËìá�à»×�é¼Ü½á�Û���ã�ì+Ý�à'âiçËÛ�Ü½à»× ó à»â½Ü�á�ß�Øhì§à»ç�Û�âiÜ½×Ëì+ë!Ú»ÞRàSö'ì	�

���������������J� øb���Süa���;��ü�ú"ý��1��ý��þR�rü#�qMþ��c��jÙ�3�=�	�rý�/ü<Ò<K � È�K × L�M;ÒCú û¼ü8�Ëü4�3�s�»þ�ürü4���üa�J�-ü����úX��ú�ü�O � ���c�3�D�rü4�¦��ÿ�K � ÒÂ��c���¼ü4�3�s�»þ�ürü4���rü<�s�-ü^���ú£�Sú}üCO × ���c��D�rü�����ÿiK × Ò¹ú û¼üí�ç¼Ý�Ü½à»×=ý���O � ��c��O × Ò��»üa�7ýSú}ü4��O � &�(FO × Ò;�L�\ú û¼üÂ�¼ü���s��þ�ü�ü4����üa�J�-ü����rú£�Sú}ü����C�3�D�rü4�¦��ÿK � `%K × Ó�z�  4��'��&�!'8"!,�'F 4@	�&�('F5�'�,^�&5�+�-£�&+� #.!,�WZ��+�.!+ �&'�.!'�,�,C24,&,�"!5&'�,D�&�32��B2H:;2�>(+�:;24��,& #"!5�-�'8'£>(+�,^�&,��<6B'F-� #"!��)
5�'�24)!+�� ]15&'�0!�J24-�'B+ �D9a]16B'�2��#'�5D5&'���"(+�5&'�:*'�.a��,� #.N���!'B+�.(U3.!+ ��'B,&'£��WZ���!'�249!,&'�.!-�'� 4@�&+�'�,�+�.N���!'B5&24.b��+�.($
� '�.!,�"!5&'�,c���32��B���!'�:;2�>�+�:;24�!,& #"(5&-�'F+�,c"!.!+E�a"!'z�(5�'�:* �f(+�.($1���!+�,C5�'�,���5&+�-£�&+� #.*+�,c.! 4�B,���5X24+�$#�<�^@� #5^6�245&)hW
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�%Þ:ö5Ü½à»ç¼Ý�â½ß»å:Û�ÙËì�Ý�ì�Û¹à»í ó ì>ëËÜ��'ã�ì>ì>ëWÞRì>âiÜ½ì�í�ÝUÛrÚSÛ�ì>ÝZÜ�Ý¹á�â½à'Ý�ì>ëWçË×¼ë�ì>ã5&(b�
���b�<�F���������#�<�>I
� Ó%uxO � & (.O × w<u^ô � ÈRô × w1ö�O � uæô � È�ô × wq`2O × uæô � È�ô × w
� Ó%uxO � & (.O × w n uæô � È�ô × w7ö�?ÚyCuxO ��� u^ô � È�ô × w#È�O ×;� uæô � ÈRô × wRw� �;�?ÚyCuxO � � u^ô × È�ô � w#È�O × � uæô × ÈRô � wRw�j�?ÚyCuxO � � u^ô � È�ô × w#È�O × � uæô � ÈRô × wRw4Òb��c��  ýSú�ûËü�þz���L��ü�Ó
� Ó5v^�*Æ � Ò�Æ × ÒH��c��Æp�Sþ�ü%ú�ûËü§ýSþ��»ü�þ#���h������c��D��ü4����ÿ�O ��� Ò�O ×;� Ò��3�C�%uxO � & (FO × w n Òþ�ü<�&�Ëü4��ú����Süa�zÿ!Ò�ú�ûËüa�
ô � �[ô × � ¤ô � � � ô × ��c�/�?ÚyCuxO × � u^ô � È�ô × w#È�O × � uæô × ÈRô � wRw�k>O � � u^ô � ÈRô × wBý�þô � � × ô × ��c�/�?ÚyCuxO � � u^ô � È�ô × w#È�O � � uæô × ÈRô � wRw�k>O × � u^ô � ÈRô × waÓ

�ZÙËì�Ý�ì+á�à»×Rë ó ã�à ó ì�ã�ÛUß§í�à»ã��¿Ú�â½Ü��>ì>Ý�Û�Ù¼ìhÜ�ë�ì+ÚµÛ�Ù¼ÚSÛ+å�í�à'ã)Úk�'Üiö'ì�× ó Ú�Ü½ã�à�íRØhà»ã�â�ëËÝ�å/Û�ÙËìZ×Ëì�Øë�à	�?Ü½×¼ÚSÛ�Üi×��¿Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì�Ý�ÙËà'çËâ½ëQárÙËà5à:Ý�ì%Û�ÙËìBà»ãrë�ì�ãZà�í�Û�Ù¼ì ó Ú�Ü½ãZÛ�Ù¼Ú�Û��»Ü½ö»ì+Ý�Û�ÙËì/�?à:ÝUÛá�ã�ì>ë�Ü½ÞËâ½ì?Ý�ç óËó à»ã�Û�Þ7ì�ÛUØhì�ì�×PÛ�Ù¼ì?ÛUØ�à¯Ú�'ì�×:Û�Ý%í�à'ã§Û�ÙËÜ�Ý ó Ú»Üiã�à»í�Øhà»ã�â½ëËÝ>å"Ú'Ý�Ý�Ü��'×ËÜ½×���Û�ÙËìÝ�Ú	�\ì?Ý�ç óËó à»ã�Û©Û�à!Û�ÙËÜ�Ý§à»ãrë�ì�ã+å�Ú�×RëN�� ?Û�àWÛ�ÙËì¿à óËó à'Ý�ÜdÛ�ìÆà'ã�ë�ì>ã����ZÙËì\Û�ÙËÜ½ã�ë ó ã�à ó ì�ã�ÛUßë�ì>Ý�á�ã�ÜiÞ7ì>Ý©ÙËàSØ¾Û�à!ëËì�ã�Üiö'ì�Û�Ù¼ì\×¼ì�Ø	Ü½×¼ë�ç¼á�ì>ëÀà»ãrë�ì�ã�Üi×D� í�ã�à	� Û�ÙËà:Ý�ì\à�í�Û�ÙËì\ÛUØhà í�ç¼Ý�ì>ë
ÞRì>âiÜ½ì�í�ÝUÛrÚSÛ�ì>Ý��

Ø�Ü��»ç¼ã�ìÇ}WÜiâ½âiçRÝUÛ�ã�Ú�Û�ì>Ý©Û�ÙËì?í�ç¼Ý�Üià'×�à ó ì�ãrÚSÛ�Ü½à»×Pà»×PÛ�ÙËã�ì�ì¿ë�à��?Üi×¼Ú�Û�Ü½×��¯Þ7ì�â½Üiì�íZÝ�Û�Ú�Û�ì>Ý��
xPì!á�Ú�×Lö:Ü½ì�Ø�$BåF" å�Ú»×¼ë�=\å)Û�àPÞRì!Ú�»ì>×:Û�Ý�Ø�ÜiÛ�ÙLÜi×�í�à'ãR�¿Ú�Û�Ü½à»× à»íhí�ã�à	� Ý�à»çËãrá�ì+Ý�à�í
ÙËÜ��'Ù�u¬Ý�à'çËãrá�ì%ñhwåM�?ì>ëËÜiç�� u-Ý�à»çËãrá�ìe}	w�åËÚ�×¼ë�âiàSØpu¬Ý�à'çËãrá�ì\ð(w�á�ã�ì>ë�Ü½ÞËÜ½âiÜiÛUß»å�ã�ì>Ý ó ì+áÛ�Üiö'ì�â½ß	�9�ì+á�Ú»ç¼Ý�ì\Øhì\×¼àSØý�¿Ú�ä»ì ó ã�ì>á�ì>ë�ì>×¼á�ì?ë�ì>á�Ü½Ý�Ü½à»×¼Ý§ÚSÛ�Ú!â½à5á>Ú�â)ãrÚSÛ�Ù¼ì�ã©Û�Ù¼Ú»×��'âià'Þ¼Ú�â)â½ì�ö'ì�âÞ¼Ú»Ý�ì>ëLà»×�Ý�à'çËã�á�ì>Ý\à�í§Ý�ç óËó à'ã�Û+å�í�ç¼Ý�Ü½×��+$ Ø�ÜiÛ�Ù>= Ú�×¼ëLÛ�ÙËìQã�ì>Ý�çËâiÛ?Ø�ÜiÛ�Ù?" Ü½Ý?×¼àSØØ�ì>âiâ���ëËì<r¼×Ëì+ë!Üi×ÅÚ¿á�à»×¼á�ì ó Û�ç¼Ú�â½âiß%ÚUç¼Ý�Û�Ü�r¼ì>ëQØZÚ/ß»å�çË×¼âiÜ½ä»ì�Ü½×!Û�ÙËìÆá�Ú»Ý�ì�à�í�Û�Ù¼ìBÝUÛ�ã�Ú/Ø*�¿Ú»×à ó ì�ãrÚSÛ�à'ã�ë�Ü�Ý�á�ç¼Ý�Ý�ì+ë ì+Ú�ã�âiÜ½ì�ã(���µà�Û�Ü½á�ìµÛ�ÙËì�ë�ì ó ì�×¼ëËì�×¼á�ì%à»í�Û�ÙËìkr¼×RÚ�âHÞRì>âiÜ½ì�í)ÝUÛrÚSÛ�ì%à'×WÚ�â½âÛ�ÙËã�ì�ì�Ý�à»çËãrá�ì+Ýa�

xPìÆØ�Üiâ½â"í�ç¼ã�Û�ÙËì�ã§ì<y ó â½à»ã�ì�Û�ÙËì ó ã�à ó ì�ã�Û�Ü½ì>Ýµà�í�Þ7ì�â½Ü½ì�í�í�ç¼Ý�Üià'×ÀÜ½×Åâ�ÚSÛ�ì>ã©Ý�ì>á�Û�Ü½à»×¼Ý>å7ÞËç�Û
r¼ã�Ý�Û�Ø�ìZë�Ü�Ý�á�ç¼Ý�Ý�Û�ÙËì�á�à'×Ë×Ëì+áÛ�Ü½à»×ÆÞRì�ÛUØ�ì>ì�×\ÞRì>âiÜ½ì�í7í�ç¼Ý�Üià'×\Ú»×¼ë\á�â�Ú»Ý�Ý�Ü�á�Ú»â:æ¹é§î ã�ì>ö5Ü½Ý�Üià'×��

� � «*»WÕa¯�Õ�ÑÆÎ¶e¯ Ó¯ÎQÒo«¹Ð��\¯���«¹Ô¹Õz ¦«¹Ò ò»Ó�¯)Õ�Ñ\Î
�¹àSØ Û�Ù¼Ú�ÛBØ�ì¿ÙRÚ/ö»ì¿ë�ì<rR×Ëì>ë�í�ç¼Ý�Ü½à»×�å�à»×Ëì á>Ú�×�ö5Üiì>Ø Û�ÙËì¿Û�ã�Ú'ë�ÜdÛ�Üià'×¼Ú�â�æ¹é§î ã�ì>ö:Ü�Ý�Üià'×
à ó ì�ãrÚSÛ�à'ã�Ú»ÝZÛ�ÙËì�Ú óËó âiÜ�á�Ú�Û�Ü½à»×Qà�í�Û�ÙËì�í�ç¼Ý�Ü½à»×Qà ó ì>ã�Ú�Û�à»ãhÛ�à Ú ó Ú�ã�Û�Ü�Ú�â½âißWÝ ó ì>á�Üsr¼ì+ëQÜi× ó ç�Û
u�à»×¼âiß!Û�Ù¼ìBÞ7ì�â½Üiì�í�Ý�ì�Û%à»í�Û�ÙËì\ì<y ó ì>ã�Û%Ü½ÝÂ�»Ü½ö»ì>×�åR×¼à�Û%Ù¼Ü½Ýµí�çËâ½â�Þ7ì�â½Üiì�í�Ý�Û�ÚSÛ�ì(w<�µÖ}×¦�'ì�×Ëì>ã�Ú»â¬åÛ�ÙËìWí�çËâ½â�ÞRì>âiÜ½ì�í§ÝUÛrÚSÛ�ì!à�íµÛ�ÙËì!ì<y ó ì�ã�Û?Ý�Û�ã�à»×��'âiß Ú¥7ì+áÛ�ÝBÛ�Ù¼ì!ã�ì>Ý�çËâiÛ�Ü½×��Fô�í�ç¼Ý�ì>ëËõPÞRì>âiÜ½ì�íÝUÛrÚSÛ�ì��1�¹àSØhì�ö'ì�ã+å'ÜiÛ�Û�çËã�×¼ÝZà'ç�ÛZÛ�Ù¼Ú�ÛhÛ�ÙËì�Þ7ì�â½Üiì�íN��ü�ú�ë�ì<r¼×¼ì>ë!Þ5ß?Û�ÙËì§í�ç¼Ý�ì>ë!Þ7ì�â½Üiì�í)Ý�Û�Ú�Û�ì
ë�ì ó ì�×¼ë¼Ý¹à»×¼âißWà»×!Û�ÙËìBÞRì>âiÜ½ì�í�Ý�ì�Û¹à»í�Û�ÙËì�ìay ó ì�ã�Û��bx�ì�×ËàSØ Ý�ÙËàSØ Û�Ù¼Ú�Û¹Û�Ù¼Ü½ÝµÜ½Ý¹Ý�à¼å7Ú�×¼ëÛ�Ù¼Ú�Û�Û�ÙËì�æ¹é§î ã�ì�ö5Ü½Ý�Ü½à»× ó ã�ì+á�Ü�Ý�ì>âiß�á>Ú ó Û�çËã�ì>ÝhÛ�Ù¼ì ó ã�à ó ì>ã�Û�Üiì+Ýhà�í�Û�ÙËÜ�Ý�Þ7ì�â½Üiì�í)Ý�ì�Û(�

129



31 ab dc 1

33

A C
3

a b
A C B 2 c d13

3 3

3

3 c

b

a

d
C

B
a bc2 2

d

2

A a1 1b d

c

1

Ø�Ü��»ç¼ã�ì/}M�1�ZÙ¼ì§á�à»ã�ã�ì+áÛhí�ç¼Ý�Üià'×!à ó ì>ã�Ú�Û�à'ã��
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Û�ÙËì�ì<y ó ì>ã�Û)Ú�'ì�×:Û�Ú�×Rë§Û�ÙËì�×ËàSö5Ü½á�ì	�FxPìhë�à%Ý�à¹Þ5ß�ë�ì<r¼×¼Üi×��©Ú�×�à'ã�ëËì�ã�Üi×���à'×BÚ�'ì�×:Û�Ý>åTu�à»ã+åì�q:çËÜ½ö/Ú»âiì>×:Û�â½ß»å/à»× ó ì>ë�Ü��»ã�ì�ì+ë§ÞRì>âiÜ½ì�í¼Ý�Û�Ú�Û�ì+Ý�w<�"Ö}×:Û�çËÜiÛ�Ü½ö»ì>âiß'åSà»×Ëì�á�Ú�×�ëËÜ½Ý�Û�Ü½×��»ç¼Ü½Ý�Ù�ÞRì�ÛUØ�ì>ì�×Û�ÙËìÎÏa�D�3�¼ú&� ú;ÿµà�í�Üi×�í�à'ãR�¿Ú�Û�Ü½à»×WÚ»×!Ú	�»ì>×'ÛhÙ¼Ú»Ýtu-Ø�ÙËÜ½árÙ!Øhà»ã�â½ëËÝhÙËì§á�Ú»×!ëËÜ½Ý�Û�Ü½×��»ç¼Ü½Ý�Ù\whÚ�×¼ë
ÜdÛrÝ/Ï<�D��J� ú¬ÿ�u�Ø�ÙRÚSÛ¹Ú�ã�ì©Û�ÙËì�Ý�à»çËãrá�ì+Ý�à»í"Û�ÙËì>Ý�ì�ë�Ü½Ý�Û�Ü½×¼á�Û�Ü½à»×¼Ý4w#�1�ZÙËì©í�à'âiâ½àSØ�Üi×D�\ë�ìar¼×ËÜiÛ�Ü½à»×
ã�Ú»×Ëä�ÝhÚ	�»ì>×'ÛrÝbr¼ãrÝUÛ�à»×oq:ç¼Ú»âiÜiÛUß»å�ÞËã�ì>Ú»ä5Üi×��ÆÛ�Ü½ì>Ý¹Þ:ß²q'çRÚ�×:Û�ÜiÛUßC�

���������������>¡�÷7�:ü<�Rú�$ × ��� ú�û¦�t�Ëü4�3�s�»þ�ürü4����üa�J�-ü��t�úX��ú�ü�O × ý�/ü�þ�Å Ù¼Ú»Ý�Ú'ÝZã�ì>âiÜ�Ú�Þ¼âiì
Ý�à'çËã�á�ì>Ý�Ú'Ý��a�:üa�¼ú*$ � ��� ú û��¼ü���s��þ�ü�ü4���rü<�J�-ü��e�ú£�Sú}ü1O � ý3�Sü�þÂÅ ¢w��þ#� ú;ú}ü<�%$ ×�£ $ � ýSþO ×�£ O �h¤ � ¤ê� úb�L��ú û¼ü��4�3��üBú�û��Sú���ûËüa�7üa�Sü�þ1O ×;� u^ô � ÈRô × w50ö'�; Wú û¼ü<��?Úy�uwO �z� u^ô � È�ô × w#È�O �z� uæô × ÈRô � wRwlk?O ×;� u^ô � ÈRô × waÓ
���b�<�F���������#�<�?p|¥"ü�ú1O � �3�C�:O × ��ü%�¼ü4�3�s�»þ�ürü4�I�rü<�J�-ü��²�úX��ú�ü<�4Ò��3�c���½ü�ú/Æ � ��c��Æ ×��üWú�ûËüQýSþ��»ü�þ#���h��Î���c�3�D�rü4����ÿ6O ��� �3�C�%O ×;� Ò§þ�ü<�&�Ëü4��ú����Sü<�dÿ	ÓN¦���þú û¼ü�þ4Òt�iü�úÂÆ �rüWú û¼ü
ýSþR�'ü�þ#���T�����c��D��ü4����ÿ²uwO � &E(FO × w n Ó�væ��O ×�£ O � Òhú û¼ü<��ô � � × ô × �����c�J�-ü<�Âô � �Ùô ×��ýSþ������ô � ÈRô × Ë�Å Ó

�¹à�Û�ì©Û�Ù¼Ú�ÛZÚ»×:ß ó ì>ëËÜ��'ã�ì>ì>ë Þ7ì�â½Ü½ì�í�Ý�Û�Ú�Û�ì©Ù¼Ú»ÝZÚ'Ý�ã�ì�â½Ü�Ú�ÞËâ½ì©Ý�à»ç¼ã�á�ì>ÝhÚ»Ýld  åËÚ�×Rë�d�e*f�g�ÙRÚ»ÝÚ»ÝZã�ì�â½Ü½Ú»ÞËâiì�Ý�à»çËãrá�ì+ÝZÚ»Ý�Ú�×5ß à»Û�ÙËì>ã ó ì+ë�Ü��»ã�ì�ì>ëWÞ7ì�â½Üiì�í)Ý�Û�Ú�Û�ì	�Ö}×WÛ�ÙËì�í�à'âiâ½àSØ�Üi×D�¼åËØhì�ç¼Ý�ì§Û�ÙËì�×¼à�Û�Ú�Û�Ü½à»×DOl§\Û�à ë�ì�×Ëà»Û�ì§Û�ÙËì�Þ7ì�â½Üiì�í�Ý�ì�Û©ë�ì<r¼×¼ì>ëQÞ5ß
Ú ó ì+ë�Ü��»ã�ì�ì>ë�Þ7ì�â½Üiì�íµÝUÛrÚSÛ�ì%OÆå"Û�Ù¼ÚSÛ\Ü½Ý>å�Û�ÙËì!Ý�ì�ÛBà�í�Øhà»ã�â½ëËÝ/�\Ü½×ËÜ��¿Ú�â�Ø�ÜiÛ�ÙLã�ì+Ý ó ì>á�Û�Û�àÛ�ÙËì§à»ãrë�ì>ã�Ü½×��BÜ½×¼ë�çRá�ì>ë�Þ5ß%O n ��æ¹â�Ý�àRå5Ø�ì©ç¼Ý�ì�OI¼*¨ Û�à\ë�ì>×Ëà�Û�ìµÛ�ÙËì§ã�ì>ö5Ü½Ý�Üià'× à�í�ÞRì>âiÜ½ì�í
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ÝUÛrÚSÛ�ìmO3Þ5ß¿Þ7ì�â½Üiì�í)Ý�ì�Û�¨ÂÚ»á>á�à'ã�ë�Ü½×��BÛ�à?æ¹é§î u�Û�Ù¼Ú�ÛZÜ�Ý>å'Û�ÙËì©Û�ÙËì§Øhà»ã�â½ë¼Ý�Ü½×�¨LÛ�Ù¼Ú�ÛZÚ»ã�ì
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± ² «�ñañ���³�«Â©�*»�«¹ÒÅÎ�«�¯F¯ Ñ�òAÕrÏ�«µÐ�©Ï�«¹Ò�´�± ÓoñÏ)Õ\�\�µ�«µÎ\Ï¶³�«l�
ñ�Õa«;òÙò'Ó�¯�Õ�ÑÆÎ

xPì��\ì>×:Û�Ü½à»×Ëì+ëAÜi×=Û�ÙËìPÜi×:Û�ã�à�ë�ç¼á�Û�Ü½à»×AÛ�Ù¼ÚSÛWÛ�ÙËì ó ã�à'ÞËâ½ìa� à�í�ÜiÛ�ì�ãrÚSÛ�Üià'×=Ù¼Ú'Ý ó ã�àSö»ì+ëÚ¦�¿Ú3ÚUà'ã\árÙ¼Ú»âiâ½ì�×D�»ì¿Û�à�æ¹é§î��}Ý�ÛUß:â½ì�ã�ì�ö5Ü�Ý�Ü½à»×8��x�ìW×¼àSØ Ý�ÙËàSØ Û�Ù¼ÚSÛ\Û�Ù¼Ü½Ý\Ü�ÝB×Ëà»ÛÆÛ�ÙËì
á�Ú»Ý�ì§í�à»ãµí�ç¼Ý�Üià'×��;�"à¿Þ7ìa�'Üi×ÀØ�ÜdÛ�Ù�åR×¼à�Û�ì�Û�Ù¼Ú�ÛµÜdÛ�ì�ãrÚSÛ�Üià'×¯Ü½Ý¹í�à»ã��?Ú»âiâ½ß�Øhì�â½â���ë�ìar¼×Ëì+ëB�¼Û�ÙËì
à»ç�Û ó ç�Û�à�í7í�ç¼Ý�Üià'×ou-Ú ó ì>ë�Ü��»ã�ì�ì+ëBÞ7ì�â½Üiì�í�ÝUÛrÚSÛ�ì!w�Ü½Ý�Ú§â½ìa�'ÜdÛ�Ü��¿Ú�Û�ìZÜi× ó ç�Û�Û�à�Ú�×Ëà»Û�ÙËì>ã�í�çRÝ�Ü½à»×à ó ì�ãrÚSÛ�Ü½à»×8�

ØËã�à	� Û�ÙËìBÝ�ì�ÛR�¬Û�ÙËì�à'ã�ì�Û�Ü�á�ë�ì<r¼×¼ÜdÛ�Üià'×Åà�í�í�ç¼Ý�Üià'×�åRÜiÛ¹í�à'âiâ½àSØ¹Ý�Ü����?ì+ë�Ü½Ú�Û�ì>âißWÛ�Ù¼Ú�ÛµÜiÛ�ì�ãR�
ÚSÛ�ì+ëQÞRì>âiÜ½ì�í�í�ç¼Ý�Ü½à»×¯Ü�Ý¹×¼à�Û%à'×Ëâ½ßWØhì�â½âs�}ë�ìar¼×Ëì>ë�å¼ÞËç�Û§Ú�â�Ý�à¿ìay5Û�ã�ìa�?ì�â½ßWØhì�â½â��;Þ7ì�Ù¼Ú/ö'ì>ëB�ZÖ}×
ó Ú�ã�Û�Ü�á�çËâ�Ú�ã+å¼ÜiÛ§Üi×ËÙ¼ì�ã�ÜdÛrÝ¹Û�ÙËìBÜ�ë�ìa� ó à�Û�ì�×¼á�ì»åCá�à����Æç�Û�Ú�Û�Ü½ö5ÜdÛUß'å7Ú»×¼ëÅÚ»Ý�Ý�à5á�Ü½Ú�Û�Ü½ö5ÜdÛUß ó ã�à ó �ì�ã�Û�Ü½ì>ÝZà�í.`b�

�"à©ë�ìa�?à»×RÝUÛ�ã�Ú�Û�ì�Û�ÙËì�Øhì�â½â��;Þ7ì�Ù¼Ú/ö'ì>ë�×¼ì>Ý�Ý�à�íËÜiÛ�ì>ã�Ú�Û�ì+ë�ÞRì>âiÜ½ì�íRí�ç¼Ý�Üià'×�åSØ�ìN�»Ü½ö»ì�Ý�ì�ö'ì�ãrÚ�â
ã�ì>â½Ú�Û�ì>ëÂì<yËÚ	� ó âiì+ÝÆØ�Ù¼Ü½árÙ�ë�ì ó ì�×RëÂà'×LÛ�ÙËì>Ý�ì ó ã�à ó ì�ã�Û�Ü½ì>Ý���Û�ÙËì¯ì<yËÚ	� ó âiì+Ý\Ú»ã�ìQÝ�Û�ÚSÛ�ì>ëÜi×�í�à'ãR�¿Ú»âiâ½ß�í�à'ãµã�ì>Ú'ëËÚ�ÞËÜ½â½ÜdÛUß'å¼ÞËç�Û�á�Ú»×¯ì>Ú'Ý�Ü½âiß!Þ7ìÆÝ�Û�ÚSÛ�ì>ëQí�à'ãR�¿Ú»âiâ½ß!Ú»×¼ë ó ã�àSö»ì+ëB��Ö}×ÀÚ�â½âà�í"Û�ÙËìa� Ú»Ý�Ý�ç��?ì%Û�Ù¼Ú�ÛZÛ�ÙËì>ã�ì§Ú�ã�ì5·�Ú�'ì�×:Û�Ý>å'ì+Ú»árÙWØ�ÜdÛ�ÙWÙËÜ�ÝZàSØ�×�Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì©àSö»ì>ã�Û�ÙËì
Ý�Ú	�\ì!Ý�ì�ÛÆà»í¹Ø�à'ã�â�ëËÝ/Å å�Ú�â½âZÚ�»ã�ì�ì>Üi×D�¯à»× Û�ÙËì�Ü½ãÆìay ó ì>ã�Û�Ü½Ý�ì�ãrÚ�×Ëä5Ü½×��Åã�ì�â�ÚSÛ�Üiö'ì¿Û�àPà»×ËìÚ�×Ëà»Û�ÙËì>ã>åËÚ»×¼ëWÚ»âiâCì�� ó âiàSß5Ü½×��?ÞRì>âiÜ½ì�í)í�ç¼Ý�Ü½à»×QÚ»ÝhÛ�Ù¼ìe�\ì�Û�ÙËà�ë!à�í)ç ó ëËÚSÛ�ì	�

� �%×ËìQà»í©Û�ÙËìÅÚ�'ì�×:Û�Ý?Ü�Ý?Û�ÙËì¦�¿Ú�×¼Ú	�»ì>ã��'¸%çËì+ÝUÛ�Üià'×��¦xAÜ½âiâ¹Û�ÙËìÅà'ã�ëËì�ã¿Ü½×1Ø�Ù¼Ü½árÙÙËì��'ì�Û�Ý©ÞËã�Ü½ì�í�ì>ëPÞ5ßÅÙËÜ�Ý§öSÚ�ã�Üià'ç¼Ý©ìa� ó â½àSß»ì�ì+Ý§Ú3¥Hì>áÛ�ÙËÜ�Ý§ã�ì>Ý�çËâdÛ�Üi×D�!Þ7ì�â½Ü½ì�íhÝ�Û�Ú�Û�ìbBæµ×¼Ý�Øhì�ã(���¹à\�
� �ZÙËì�Ý�Ú�?ìe�¿Ú�×RÚ�»ì>ãZÜ½Ý¹á�à»×¼Ý�Ü�ë�ì�ã�Üi×D�\Ø�Ù¼ì�Û�Ù¼ì�ã�Û�àÇ�»ì�ÛµëËÜiã�ì>á�Û�â½ß�ç ó ëËÚSÛ�ì>ëQÞ5ß Û�ÙËìì�� ó âiàSß'ì�ì>Ý>å�à'ã?Û�à�Ù¼Ú/ö»ì!ÙËÜ�Ý¿ö5Ü½á�ì<�X�¿Ú�×¼Ú	�»ì�ã��»ì�Û¿ç ó ë¼ÚSÛ�ì+ë1Þ:ß Û�ÙËì¯ã�ì>Ý�Û¿à�íµÛ�ÙËìì�� ó âiàSß'ì�ì>Ý>å/Ú�×¼ë§Û�ÙËì�×ÆÙ¼Ú/ö»ì�Û�ÙËì�ö:Ü�á�ìa�&�¿Ú»×¼Ú�'ì�ã�ç ó ëËÚ�Û�ìhÙËÜ����.¸%çËì>Ý�Û�Ü½à»×8�8�5ÙËà»ç¼â½ëÛ�ÙËì��?Ú»×¼Ú�'ì�ã©Ø�à'ã�ã�ß!Û�Ù¼Ú�Û§Û�ÙËì?ã�ì>Ý�çËâdÛ§Ø�Ü½âiâ�Þ7ì Ý�ä'ì�Øhì>ë¯Þ5ß¯Û�ÙËì?ö5Ü½á�ì<�X�?Ú»×¼Ú�'ì�ã(
 Ý
ó ì�ãrÝ�à'×¼Ú�âCÞ¼Ü½Ú'Ý�ì+Ý\BÀæ¹×¼Ý�Ø�ì>ã��N�¹à¼åËÛ�ÙËì/�¿Ú»×¼Ú�'ì�ã(
 Ýhã�ì>Ý�çËâdÛ�Üi×D�¿ÞRì>âiÜ½ì�í�Ý�Û�ÚSÛ�ì�Ø�Üiâ½â"Þ7ìÚ'ÝZÜi×WÛ�ÙËìtrRã�Ý�Ûµá�Ú'Ý�ì��
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� Ó5v^�*Æ � Ò�Æ × ÒH��c��Æp�Sþ�ü%ú�ûËü§ýSþ��»ü�þ#���h������c��D��ü4����ÿ�O � � Ò�O × � Ò��3�C�%uxO � & (FO × wzn�Òþ�ü<�&�Ëü4��ú����Süa�zÿ!Ò�ú�ûËüa�
ô � �[ô × � ¤ô � � � ô × ��c�/�?ÚyCuxO × � u^ô � È�ô × w#È�O ×;� uæô × ÈRô � wRw�k>O �z� u^ô � ÈRô × wBý�þô � � × ô × ��c�/�?ÚyCuxO ��� u^ô � È�ô × w#È�O �z� uæô × ÈRô � wRw�k>O ×;� u^ô � ÈRô × waÓ

���b�q�<ç[Z
ð	�;�5ç óËó à:Ý�ì�ô � ÈRô × Ë Å å§Ú�×¼ë O � Ú»×¼ë�O × Ú�ã�ìÀÜ½×¼ë�çRá�ì>ë Þ5ß=Ý�ì�Û�Ý!à�í\Ý�à'çËã�á�ì>ÝK � È\K × ËDMµåCã�ì+Ý ó ì>á�Û�Ü½ö»ì>âiß��Â�5ç óËó à'Ý�ì��ÇËèuwO � &A(.O × w<uæô � È�ô × w#�t�ZÙËì�×�å7Þ5ß6éµìar��×ËÜiÛ�Ü½à»×RÝ;}ÆÚ»×¼ëoí�å

� Ë øTu^Å È;��wbË6K � `2K × �	ô � �¢ô × úa`�øt�  ú
ö øTu^Å È;��wbË6K � ��ô � �[ô × úa`¦øb�� 	úa`

øTu^Å È;��wbË6K × ��ô � �[ô × úa`¦øb�� 	ú
ö O � uæô � È�ô × wq`%O × uæô � ÈRô × w
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�µàSØ¾Ý�ç óËó à'Ý�ìC��Ë+O � uæô � È�ô × w�`DO × u^ô � È�ô × w#���ZÙ¼ì�×�åCÚ�:Ú�Ü½×¯Ú óËó â½ß5Üi×D��éµìar¼×ËÜ��Û�Üià'×¼Ý;}\Ú�×¼ëoí�å
� Ë u�øhu�Å È;��wNË:K � �ô � �¢ô × úa`�øb�� 3ú!wq`

u�øhu�Å È;��wNË:K × �ô � �¢ô × úa`�øb�� 3ú!w
ö øTu^Å È;��wbË6K � `2K × �	ô � �¢ô × úa`�øt�  ú
ö uxO � & (.O × wauæô � È�ô × w

}M��9hß�é%ì<r¼×¼ÜdÛ�Üià'×Qñ¼å
uxO � & (.O × wznbuæô � È�ô × w7ö�?ÚyCuRuwO � & (.O × w<u^ô � ÈRô × w�wÜiíH�?Úy�u�uwO � & (.O × w<u^ô × ÈRô � w�wlj�?Úy�u�uwO � & (.O × w<u^ô � ÈRô × w�w�å¼Ú�×Rë�; �à»Û�ÙËì>ã�Ø�Ü�Ý�ì	�
�ZÙ5ç¼Ý>å�ÜdÛµÝ�çlk á�ì+ÝhÛ�à Ý�ÙËàSØAÛ�Ù¼ÚSÛ

�¿Ú3yBuwO � � uæô × ÈRô � w#ÈzO × � uæô × È�ô � w�wj �¿Ú3y�uwO � � uæô × ÈRô � w<È�O × � u^ô × È�ô � w�w
Ü�¥

�¿Ú3yBu�uxO � & (.O × wauæô × È�ô � wRwj �¿Ú3y�u�uxO � & (.O × wauæô � È�ô × wRw
ö �¿Ú3y�uwO � � uæô � ÈRô × w<È�O × � u^ô � È�ô × w�w

�µàSØ�å�Þ:ß Û�ÙËìtr¼ãrÝ�Û ó Ú�ã�Û¹à�í"Û�ÙËÜ�Ý ó ã�à ó à'Ý�ÜdÛ�Üià'×�å
uxO � & (.O × wauæô � È�ô × w ö O � u^ô � ÈRô × wÌ`6O × u^ô � È�ô × w

Ý�à
�¿Ú3yBu�uxO � & (.O × wauæô � È�ô × wRw
ö �¿Ú3yBuwO � uæô � È�ô × w�`6O × uæô � ÈRô × wRw
ö �¿Ú3yBuæ�¿ÚyBuxO � u^ô � È�ô × w�w#ÈR�¿Ú3y�uwO × uæô � È�ô × wRw�w

Ú»×¼ëCåËÝ�Ü��?Ü½â½Ú»ã�â½ß»å
�¿Ú3yBu�uxO � & (.O × wauæô × È�ô � wRw
ö �¿Ú3yBuæ�¿ÚyBuxO � u^ô × È�ô � w�w#ÈR�¿Ú3y�uwO × uæô × È�ô � wRw�w

uot�ötw*��ç óËó à'Ý�ì
�¿Ú3yBu�uxO � & (.O × wauæô × È�ô � wRwj �¿Ú3y�u�uxO � & (.O × wauæô � È�ô × wRw
ö �¿Ú3y�uwO � � uæô � ÈRô × w<È�O × � u^ô � È�ô × w�w
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�ZÙËì>×
�¿Ú3yBu�uxO � & (.O × wauæô × È�ô � wRw
ö �¿Ú3yBuæ�¿ÚyBuxO � u^ô × È�ô � w�w#ÈR�¿Ú3y�uwO × uæô × È�ô � wRw�wj �¿Ú3yBuwO �z� uæô � ÈRô × w<È�O ×;� u^ô � È�ô × w�w

Ý�à?ÜdÛ¹Ü�ÝZì�×Ëà'ç��»ÙWÛ�à¿Ý�ÙËàSØ
�¿Ú3yBuwO � � uæô × ÈRô � w#ÈzO × � uæô × È�ô � w�wk �¿Ú3yBuæ�¿ÚyBuxO � u^ô × È�ô � w�w#ÈR�¿Ú3y�uwO × uæô × È�ô � wRw�w

��à ë�à Ý�à¼åhØ�ìÅà'×Ëâ½ßL×Ëì>ì>ëÂÛ�àLÝ�ÙËàSØ Û�Ù¼Ú�Û2O ��� uæô × È�ô � wNk �¿ÚyCuxO � uæô × È�ô � w�wÚ»×¼ë�O ×;� u^ô × ÈRô � w�k �?ÚyCuxO × u^ô × È�ô � w�w<� �ZÙËì+Ý�ìPí�à»â½âiàSØ¥Ü����?ì>ë�Ü�ÚSÛ�ì�â½ßAí�ã�à��
é%ì<r¼×¼ÜdÛ�Üià'×Qñ?Ú»×¼ë Û�ÙËì§í-Ú»á�Û�Û�Ù¼Ú�Û5�� �Ü½Ý=�?Ü½×ËÜ��¿Ú»â�Ø�ã�Ûcjt�
uXöqu¢w*��ç óËó à'Ý�ì

�?Úy�uwO �z� u^ô × È�ô � w#ÈzO × � uæô × È�ô � wRwj �¿Ú3yBuwO �z� u^ô � ÈRô × w#ÈzO × � uæô � È�ô × wRwz7
æ%Ý�Ý�ç��?ì»å�Ø�ÜiÛ�Ù¼à»ç�ÛÀâ½à'Ý�Ý¯à»í��'ì�×Ëì>ã�Ú»âiÜiÛUß»å©Û�Ù¼ÚSÛ�O × � uæô � È�ô × w3k O � � uæô � È�ô × w<��ZÙËì>×�åZO ��� uæô × È�ô � wlj>O ��� uæô � È�ô × w�Ú�×¼ë¿Ý�Ü½×¼á�ì1O �z� uæô � ÈRô × w10ö3�; 'å'Þ5ß©éµìar¼×ËÜ��Û�Üià'×�ñe�¿Ú3y�uwO � uæô � È�ô × wRw7ö'O �z� uæô � ÈRô × w#�7�%Þ¼Ý�ì�ã�ö»ì%Ú�â�Ý�à�Û�Ù¼ÚSÛÐO × � uæô × È�ô � wÐjO �z� u^ô � ÈRô × w#�
x�ì�×ËàSØ Ý�ÙËàSØAÛ�Ù¼ÚSÛ;�¿ÚyBuxO × u^ô � È�ô × w�wlkJO ��� uæô � È�ô × w<�7�5ç óËó à'Ý�ì�¿Ú3yBuwO × uæô × È�ô � wRwlj¢�¿ÚyBuxO × u^ô � È�ô × w�w#�N�ZÙËì�×QÞ5ß�é%ì<r¼×ËÜiÛ�Ü½à»×¯ñ¼å

�¿Ú3yBuwO × uæô � È�ô × wRw
ö O ×;� u^ô � ÈRô × wk O �z� u^ô � ÈRô × w

�%×WÛ�ÙËì�à»Û�ÙËì>ã�Ù¼Ú�×RëCåËÜií��¿Ú3yBuwO × uæô × È�ô � wRw1öþ�¿ÚyBuxO × u^ô � È�ô × w�whÛ�ÙËì�×�¿Ú3yBuwO × uæô � È�ô × wRw¦ös�  j O � � uæô � ÈRô × w<�ýØ�Ü½×¼Ú»âiâ½ß»å�Üií/�¿Ú3y�uwO × uæô � ÈRô × wRw�j�¿Ú3yBuwO × uæô × È�ô � wRw�Û�ÙËì>×!í�ã�à��Héµìar¼×ËÜiÛ�Ü½à»×Åñ?Ú�×Rë Û�ÙËì�à»Þ¼Ý�ì�ã�öSÚSÛ�Üià'×WÚ�Þ7àSö»ì'å
�¿Ú3yBuwO × uæô � È�ô × wRwj �¿Ú3y�uxO × uæô × È�ô � w�w
ö O ×;� u^ô × ÈRô � wj O �z� u^ô � ÈRô × w

�ZÙËì>ã�ì�í�à»ã�ì»å
�¿Ú3yBu�uxO � & (.O × wauæô � È�ô × wRw
ö �¿Ú3yBuæ�¿ÚyBuxO � u^ô � È�ô × w�w#ÈR�¿Ú3y�uwO × uæô � È�ô × wRw�w
ö �¿Ú3yBuwO �z� uæô � ÈRô × w<È��¿Ú3y�uwO × uæô � È�ô × wRw�w
ö O � � u^ô � È�ô × wz7
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�µà�Û�ì©Û�Ù¼ÚSÛ¹Øhì§Ù¼Ú/ö»ì�Ú�â�Ý�à\Ý�ÙËàSØ�×WÛ�Ù¼Ú�Û;�?ÚyCuxO × u^ô × ÈRô � w�w�j?O ��� uæô � È�ô × w#�
�µàSØ�å'Ý�Üi×¼á�ì1O �z� u^ô × È�ô � wlj?O �z� uæô � ÈRô × w�Ú»×¼ëCå5á�à'×¼Ý�ì(q:çËì�×:Û�â½ß»åO ��� uæô � È�ô × w�0ö�� »åCÞ5ß6é%ì<r¼×ËÜiÛ�Ü½à»×�ñ²�?ÚyCuxO � u^ô × È�ô � w�w�jÁ�¿Ú3yBuwO � uæô � È�ô × wRw�öÃO ��� uæô � È�ô × w<�ë�ç�Û�Û�Üi×��ÀÛ�ÙËÜ�ÝÆÛ�à��»ì�Û�ÙËì�ãÆØ�ÜdÛ�Ù Û�ÙËìWã�ì>Ý�çËâiÛ�ÝBí�ã�à�� Û�ÙËì ó ã�ì�ö5Üià'ç¼Ý ó Ú�ãrÚ�'ã�Ú ó Ù�å�Ø�ìÙ¼Ú/ö'ìµÛ�Ù¼ÚSÛ

�¿Ú3yBu�uxO � & (.O × wauæô × È�ô � wRw
ö �¿Ú3yBuæ�¿ÚyBuxO � u^ô × È�ô � w�w#ÈR�¿Ú3y�uwO × uæô × È�ô � wRw�wj O � � u^ô � È�ô × w
ö �¿Ú3yBu�uxO � & (.O × wauæô � È�ô × wRw

Ú»×¼ëCåM�»Ü½ö»ì>×Wà'çËã�ì>Ú»ã�â½Ü½ì�ã�Ú»Ý�Ý�çD� ó Û�Ü½à»×�å
�?Úy�u�uwO � & (.O × w<u^ô � ÈRô × w�w
ö �¿Ú3yBuwO �z� u^ô � ÈRô × w#ÈzO × � uæô � È�ô × wRwz7

ñ��=x�ì�ÝUÛrÚ�ã�Û�Þ:ß ó ã�àSö5Ü½×��?Ú�×QÚ�çMy�Ü½âiÜ�Ú�ã�ß¿âiì����?ÚD�
õa��è/è�¬�� øb���Süa��Å �3�C�©M �3�Ç����ý�/ü<Ò���ý�þ²�3�Rÿ¯ú#��ý��Ëü4�3�s�»þ�ürü4���rüa�J�-ü����úX��ú�ü<�
O � Ò*O × Òb�3�C����¼ÿ¿úw��ý»��ýSþ#���!�;ô � ÈRô × Ë�ÅÉÒ

O � u^ô � È�ô × w � O × uæô × È�ô � w1öùøt�; 	ú87
���t�Ì��ç[Zs9�ßCéµìar¼×ËÜiÛ�Ü½à»×�}�å��; %Ë6O � uæô � ÈRô × w�Ú»×¼ë��� eËDO × u^ô × ÈRô � wå:Ý�à�øb�� 	ú#vO � u^ô � ÈRô × w � O × u^ô × È�ô � w#�
�5ç óËó à:Ý�ìi��ö¸u^Å È;� [ w�ËJO � uæô � È�ô × w � O × uæô × È�ô � w%í�à»ã�Ý�à	�?ìi��Ë�M��²�ZÙËì�×��Ë3O � uæô � È�ô × w�Ú�×¼ë���Ë'O × u^ô × ÈRô � w#�Àæ%Ý�Ý�ç��?ì���0ö��; ��¦�ZÙËì�×"å�Þ5ß�éµìar¼×ËÜ��
Û�Üià'×j}Ëå8ô � � [ ô × Ú»×¼ë�ô � � [ ô × å)Ú!á�à»×:Û�ãrÚ»ëËÜ½á�Û�Ü½à»×��Î�ZÙËì>ã�ì�í�à»ã�ì»å��²ö��� 'å�Ý�à
O � u^ô � ÈRô × w � O × u^ô × È�ô � w�vÙøt�� ú��
ª �<�b��«�«#¬�b®	IÌ¯�� ø=���/üa�eÅpÒ�M;Ò<O � Ò,O × ÒTô � Ò��3�C�Nô × �3�b�	�rý3�Sü<ÒT�¿ÚyBuxO � u^ô � È�ô × w�w7ö�¿Ú3yBuwO × uæô × È�ô � wRwe�����c�J�-ü<�;�¿Ú3y�uwO � uæô � È�ô × wRw1ö3�� TÓ
���t�Ì��ç[Z �5ç óËó à'Ý�ìe�¿Ú3yBuwO � u^ô � ÈRô × w�w1öß�¿Ú3y�uwO × uæô × È�ô � wRw#�7�ZÙËì>×�å¼Ý�Üi×Rá�ì�¿Ú3yBuwO � uæô � È�ô × wRwbËDO � uæô � È�ô × wZÚ»×¼ë��¿Ú3yBuwO × u^ô × ÈRô � w�wbËDO × uæô × ÈRô � wå�¿Ú3yBuwO � uæô � È�ô × wRwbËDO � uæô � È�ô × w � O × uæô × ÈRô � w<�.9�ß�Û�ÙËì�Ú»ÞRàSö'ì%ã�ì>Ý�çËâiÛ>å�¿Ú3yBuwO � uæô � È�ô × wRw1ö3�� ��
x�ì ó ã�à5á�ì�ì+ë Û�à ó ã�àSö'ìµÛ�ÙËì ó ã�à ó à'Ý�ÜdÛ�Üià'×��
uot�ötwB��ç óËó à'Ý�ì1ô � � � ô × Ú�×¼ëk�¿Ú3yBuwO ×;� uæô � ÈRô × w<È�O ×;� u^ô × È�ô � w�w�kJO ��� uæô � È�ô × w<��ZÙËì>×�åBÞ5ß éµìar¼×ËÜiÛ�Ü½à»×ýÃRå�O � � u^ô � È�ô × w|0öQ�  Ú�×¼ë O � � uæô × ÈRô � wvö �  å\Ý�à
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O �z� u^ô × ÈRô � wlj?O �z� uæô � ÈRô × w<��æ¹â�Ý�àRå<O × � uæô � È�ô × w�kJO �z� u^ô � È�ô × wÚ»×¼ë/O × � uæô × È�ô � w»kHO ��� uæô � È�ô × w<���5ç óËó à:Ý�ì6O × � uæô × È�ô � w�öGO ��� uæô � È�ô × w<��ZÙËì>×�å�O × � uæô × ÈRô � w�0ö �  Ú�×RëCå�Û�Ù:çRÝ�å*O × � uæô � È�ô × weö��  ��ØËçËã�Û�Ù¼ì�ã��\à'ã�ì'å�Þ5ß
é%ì<r¼×¼ÜdÛ�Üià'×Qñ¼å<O × � uæô × È�ô � w1öþ�¿Ú3yBuwO × uæô × È�ô � wRwZÝ�à

�¿Ú3yBuwO � uæô � È�ô × wRw
ö O �z� u^ô � ÈRô × w
ö O ×;� u^ô × ÈRô � w
ö �¿Ú3y�uxO × uæô × È�ô � w�w

Ú»×¼ëCå�Þ5ß[Í�à'ã�à'âiâ�Ú�ã�ßI}M�½ð»åN�?Úy�uwO � u^ô � ÈRô × w�w²ö �  åhÚ�á�à'×:Û�ãrÚ»ë�Ü�áÛ�Üià'×��þÍ�à'×¼Ý�ì<�
q:çËì>×'Û�âiß'å<O × � uæô × È�ô � wlj?O � � u^ô � ÈRô × wå¼Ý�à

�?Úy�uwO �z� u^ô × È�ô � w#ÈzO × � uæô × È�ô � wRwj O ��� uæô � È�ô × w
ö �¿Ú3yBuwO � � u^ô � ÈRô × w#ÈzO × � uæô � È�ô × wRwz7

9hß�é%ì<r¼×¼ÜdÛ�Üià'×Qñ?Ú»×¼ë�ë�ã�à ó à'Ý�ÜdÛ�Üià'×�}�å
uwO � & (.O × w n uæô � ÈRô × w 0ö �� ��3�c�
uwO � & (.O × wznNuæô × ÈRô � w ö �  

Ý�à¼å�Þ5ß�é%ì<r¼×¼ÜdÛ�Üià'×�ÃRåMô � �èô × �
�5Ü��?Üiâ�Ú�ã�â½ß»å�ÜiíMô � � × ô × Ú�×¼ëk�¿Ú3y�uxO ��� uæô � È�ô × w<È�O �z� u^ô × ÈRô � w�wlk>O × � uæô � È�ô × wåÛ�ÙËì�×�ô � �èô × �
uXöqu¢w*��ç óËó à'Ý�ìkô � �[ô × �.9hß�é%ì<rR×ËÜdÛ�Üià'×�Ã¼å

uwO � & (.O × w n uæô � ÈRô × w 0ö �� ��3�c�
uwO � & (.O × wznNuæô × ÈRô � w ö �  È

Þ5ß�é%ì<r¼×¼ÜdÛ�Üià'×Qñ
�¿Ú3y�u�uxO � & (.O × wauæô × ÈRô � w�wj �¿Ú3yBu�uxO � & (.O × wauæô � È�ô × wRw#È

Ú»×¼ë�Þ5ß�ë�ã�à ó à:Ý�ÜiÛ�Ü½à»×�}
�¿ÚyBu^�¿Ú3y�uwO � uæô × ÈRô � w�w<È��¿Ú3y�uxO × uæô × È�ô � w�w�w
ö �?ÚyCu^�¿Ú3y�uwO � uæô × ÈRô � wRwÌ`²�?ÚyCuxO × u^ô × È�ô � w�wRwj �?ÚyCuxO � u^ô � È�ô × wÌ`6O × uæô � È�ô × w�w
ö �?ÚyCu^�¿Ú3y�uwO � uæô � ÈRô × wRw#È��¿ÚyBuxO × u^ô � È�ô × w�w�w
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æ%Ý�Ý�ç��?ìt�?Úy�uwO × u^ô � ÈRô × w�wlk[�¿Ú3yBuwO � uæô � ÈRô × wRw#�1�ZÙËì>×
�¿Ú3y�uwO � uæô × ÈRô � w�w�j �¿Ú3y�uwO � uæô � È�ô × wRwe�3�C�
�¿Ú3y�uwO × uæô × ÈRô � w�w�j �¿Ú3y�uwO � uæô � È�ô × wRwz7

é%ì<r¼×¼ÜdÛ�Üià'×Qñ��'Üiö'ì>Ýhç¼ÝZÛ�Ù¼ÚSÛ
O � � uæô � È�ô × w ö �¿Ú3y�uwO � uæô � È�ô × wRwe�3�C�O � � uæô × È�ô � w ö �  

�ZÙ5ç¼Ý>å�Þ5ß�éµìar¼×ËÜiÛ�Ü½à»×oÃ�ô � � � ô × ��æµâ½Ý�à¼å5í�ã�à	��éµìar¼×ËÜiÛ�Ü½à»×¯ñ\Ø�ì§ä5×ËàSØ
O ×;� u^ô � ÈRô × w!k �¿Ú3yBuwO × uæô � È�ô × wRw Ú»×¼ë3O × � uæô × È�ô � w!k �?Úy�uwO × u^ô × ÈRô � w�w<��ZÙËì>ã�ì�í�à»ã�ì»åT�»Ü½ö»ì>×�Û�Ù¼ÚSÛ¹à'çËã�à»ã�Ü��»Ü½×¼Ú�âCÚ»Ý�Ý�ç�� ó Û�Ü½à»×QÚ�×¼ë�Û�Ù¼ì§í-Ú»áÛ�Û�Ù¼ÚSÛ
�¿Ú3yBuwO × uæô × È�ô � wRwlj¢�¿ÚyBuxO � u^ô � È�ô × w�wåRØ�ì§Ù¼Ú/ö'ì

�¿Ú3yBuwO ×;� uæô � ÈRô × w#ÈzO × � uæô × È�ô � w�wk �¿Ú3yBuæ�¿ÚyBuxO × u^ô � È�ô × w�w#ÈR�¿Ú3y�uwO × uæô × È�ô � wRw�wk �¿Ú3yBuwO � uæô � È�ô × wRw
ö O � � u^ô � È�ô × w

�5Ü��?Üiâ�Ú�ã�â½ß»å�Üií��¿Ú3yBuwO � uæô � È�ô × wRwlk¢�¿ÚyBuxO × u^ô � È�ô × w�w�å�Û�ÙËì>×�ô � � × ô × Ú»×¼ë
�¿Ú3y�uwO �z� uæô � ÈRô × w<È�O �z� u^ô × È�ô � w�wlkJO × � uæô � È�ô × w 7

���b�<�F���������#�<�?p|¥"ü�ú1O � �3�C�:O × ��ü%�¼ü4�3�s�»þ�ürü4�I�rü<�J�-ü��²�úX��ú�ü<�4Ò��3�c���½ü�ú/Æ � ��c��Æ ×��üWú�ûËüQýSþ��»ü�þ#���h��Î���c�3�D�rü4����ÿ6O ��� �3�C�%O ×;� Ò§þ�ü<�&�Ëü4��ú����Sü<�dÿ	ÓN¦���þú û¼ü�þ4Òt�iü�úÂÆ �rüWú û¼ü
ýSþR�'ü�þ#���T�����c��D��ü4����ÿ²uwO � &E(FO × w n Ó�væ��O ×�£ O � Òhú û¼ü<��ô � � × ô × �����c�J�-ü<�Âô � �Ùô ×��ýSþ������ô � ÈRô × Ë�Å Ó

���b�q�<ç[Z �5ç ó¼ó à:Ý�ì%O � £ O × å�ô � È�ô × ËþÅ å�Ú�×¼ë�ô � Æ × ô × �29hß�éµìar¼×ËÜiÛ�Ü½à»×IÃRå�ÜiÛÝ�çlk á�ì>Ý§Û�àÅÝ�ÙËàSØ Û�Ù¼Ú�Û�uwO � &í(.O × w n7uæô � È�ô × w�0öH�  Ú»×¼ëvuwO � &í(.O × w n7uæô × È�ô � weöH�  �
9�ß6é%ì<r¼×¼ÜdÛ�Üià'×¦Ã¼åqO ×;� u^ô � È�ô × wm0ö �� ÆÚ�×RëNO × � uæô × È�ô � w=ö �� 	�k��Üi×¼á�ì©O �c£ O × Ú�×¼ëO × � uæô � È�ô × wN0ö �� »åN�?Úy�uwO �z� u^ô � È�ô × w#ÈzO ��� uæô × È�ô � wRw2k¶O ×;� uæô � ÈRô × w\Þ5ß�éµìar¼×ËÜ��Û�Ü½à»×�~D�k�ZÙ5ç¼Ý>å�O �z� uæô � ÈRô × w1k|O × � uæô � È�ô × w%Ú�×¼ë!O ��� uæô × È�ô � w1k|O × � uæô � È�ô × w�åCÝ�à�?Úy�uwO �z� u^ô � È�ô × w#È�O ×;� uæô � ÈRô × wRw�öÊO × � uæô � È�ô × w<�Bæ¹â�Ý�àRåCÝ�Ü½×¼á�ì%ü��ÎË!M�7Ì�60ö �� *u�; mj?�'åËØhì©ÙRÚ/ö»ìk�?Úy�uwO �z� u^ô × È�ô � w#È�O ×;� uæô × È�ô � wRw7ö3O �z� u^ô × ÈRô � w#��5ç óËó à'Ý�ì�O �z� u^ô × È�ô � w*ö O ×;� u^ô � È�ô × w=ö �Bí�à»ã%Ý�à	�?ìC�ÇË:M��t�ZÙËì�×"åRÞ5ß6éµìar¼×ËÜ��Û�Ü½à»× ñËå*�oËJO � uæô × È�ô � w�Ú�×¼ë+�¦Ë>O × uæô � ÈRô × w#�29hç�Û�Û�Ù¼ì�×�å�Ý�Üi×¼á�ì���0öH�; 'å�Þ5ß!éµìar��
×ËÜdÛ�Üià'×Û}²ô × � [ ô � Ú»×¼ë�ô � � [ ô × ���ZÙËÜ½Ý§Ü�Ý�Ú!á�à»×:Û�ã�Ú'ë�Ü½á�Û�Ü½à»×�Ý�Ü½×¼á�ì»�²Ë+M¾Ü�� ó â½Üiì+Ý� [ Ü�Ý©á�à»×Ë×¼ì>áÛ�ì>ëB���ZÙËì�ã�ì�í�à'ã�ì'åc�¿ÚyCuxO � � uæô × È�ô � w<È�O × � u^ô × ÈRô � w�wköÊO � � uæô × È�ô � wcjO × � uæô � È�ô × w1öß�¿Ú3yBuwO � � u^ô � ÈRô × w#ÈzO × � uæô � È�ô × wRw#�F9hß�ë�ã�à ó à:Ý�ÜiÛ�Ü½à»×�}�åuwO � & (.O × wzn7u^ô � È�ô × w50ö3�  Ú�×Rë�uxO � & (.O × w n7uæô × È�ô � wNöJ�  �
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���b�<�F���������#�<�	~}¥"ü�ú*O � �3�c�©O × �rü*�Ëü4�3�s�»þ�ürü4�²�rüa�J�-ü��t�úX��ú�ü<�Â�#�D�rûQú�û���ú*O ×�£ O � Óì7û¼ü<��uwO � & (.O × w@§Mö'O � ¼kuxO × §TwaÓ
���b�q�<ç[Z Ä�ì�Û¦Æ � åkÆ × åZÚ�×¼ëóÆ Þ7ìQÛ�Ù¼ì¯à»ãrë�ì�ã�Üi×D�'ÝÆÜi×¼ëËç¼á�ì+ëÂÞ5ß>O � å�O × åhÚ»×¼ëJO ö
O � & (.O × å:ã�ì+Ý ó ì>á�Û�Ü½ö»ì>âiß��H�5ç óËó à:Ý�ì�ôêË6Oa§\����àBÝ�ÙËàSØLÛ�Ù¼ÚSÛNôêË6O � ¼1uxO × §Twå'ÜdÛZÝ�çlk á�ì>ÝÛ�àer¼ãrÝ�Û�Ý�Ù¼àSØÂÛ�Ù¼ÚSÛNôêË6O × §BÚ�×Rë\Û�Ù¼Ú�Û�í�à»ã�ì�ö»ì>ã�ß�ô7e�ËDO × §¼å	ôêÆ � ô.e��*9hß?ë�ì<r¼×¼ÜdÛ�Üià'×�åôðËj�?Üi×�u�ÆeÈRÅêw�å�Ý�à�ücô7eNËIÅÃ7CôðÆêô7e&�c9hß¦ë�ã�à ó à'Ý�ÜdÛ�Üià'×ÀñËåcüCô7eNËIÅ 7Bô Æ × ô7e&��ZÙ:çRÝ�åMôêË��?Üi×Fu�Æ × È�Åêwå¼Ý�à�ôÁËDO × §D��¹àSØ âiì�Û�ô7ekË�O × §\�¦x�ìWÝ�ÙËàSØ Û�Ù¼Ú�Û�ô Æ � ô7e&���5ç óËó à:Ý�ìW×Ëà�Û+å�Ü�� ì	�½å�ô7e1� � ô/��ZÙËì�×�å¼Þ:ß%éµìar¼×ËÜiÛ�Ü½à»×�Ã¼å<O �z� uæô/ÈRô7eæw7ö'�; �Ú»×¼ë6O ��� uæô7e&ÈRôÂw10ö'�; h�7�5Ü½×¼á�ìeô.e�ËDO × §Mö�\Ü½×8u�Æ × È�Åùw�åNô Æ × ô7e%Ú�×¼ë[ô7e�Æ × ô/�Á�5à�O × � uæô%È�ô7e�w�ö O ×;� uæô/ÈRô7eæw²ö �� ¯Þ5ß
éµìar¼×ËÜiÛ�Ü½à»×�Ã\�Â�ZÙ5ç¼Ý>å\�¿ÚyCuxO × � uæô%È�ô e w#ÈzO × � u^ô e È�ôÂwRw;ö}�� »j�O �z� u^ô e È�ôÂw;ö �ÆÝ�Ü½×¼á�ìü��eË%M�7��»0ö'�  us�  j?�	�a9�ß²ë�ã�à ó à'Ý�ÜdÛ�Üià'×�}�åDô7eq�[ô/�F9hç�Û�Û�ÙËì�×oôÊ0Ë��?Ü½×8u�ÆeÈ�Åùw<�
Í�à»×:Û�ãrÚ»ë�Ü�áÛ�Üià'×����ZÙËì�ã�ì�í�à'ã�ì'å�ücô7eBËoÅÃ7MôêÆ � ô7e&�xPì�×¼àSØ ó ã�àSö'ì)Û�ÙËì�à�Û�Ù¼ì�ã�ëËÜiã�ì>á�Û�Ü½à»×�à�í5Û�ÙËì ó ã�à ó à'Ý�ÜiÛ�Ü½à»×��F��ç óËó à'Ý�ì7ôêË:O � ¼\uxO × §hw<��ZÙËì�×�ô Ë��?Ü½×8u�Æ � È��?Ü½×8u�Æ × ÈRÅêw�w<�/�ZÙËÜ½Ý©Ü�� ó âiÜ½ì>Ý%Û�Ù¼ÚSÛtô Ë��?Ü½×Fu�Æ × ÈRÅêwµØ�ÙËÜ�árÙ�åHÜi×Û�çËã�×�åËÜ�� ó âiÜ½ì>ÝhÛ�Ù¼ÚSÛ=üCô7eBËoÅÃ7MôêÆ × ô7e&�7�5ç óËó à'Ý�ìeô7e�Ë�Å ��xPì�Ý�ÙËàSØAÛ�Ù¼ÚSÛ;ôêÆèô7e&�
�5ç óËó à'Ý�ì�×Ëà�Û+å�Ü�� ì	�½å�ô7eq�èô%�1ë�ã�à ó à'Ý�ÜdÛ�Üià'×�}��»Ü½ö»ì+Ýhç¼ÝZÛUØhà\á>Ú»Ý�ì	�
ð	�=ô7eq� × ô/�7�ZÙËì>×�ôÊ0Ë��?Üi×Fu�Æ × ÈRÅêw#�NÍ�à'×'Û�ã�Ú'ë�Ü�áÛ�Ü½à»×8�
}M�=ô7em� � ô%�è�5Ü½×¼á�ì�ô7em� ô�åNô.eeÆ × ô Þ5ßIë�ã�à ó à'Ý�ÜiÛ�Ü½à»× ñ��I�ZÙ5ç¼Ý>å�Ý�Üi×Rá�ì�ôºË
�?Ü½×8u�Æ × ÈRÅêwå�Ý�à¯Ü½Ý%ô7e&�:9�çËÛBÜdí;ô.e�� � ô�å)Û�ÙËì�×jôs0Ë[�?Ü½×8u�Æ � È��?Ü½×8u�Æ × ÈRÅêw�w<�Í�à'×'Û�ã�Ú'ë�Ü�áÛ�Ü½à»×8�

�ZÙËì�ã�ì�í�à'ã�ì'å	üCô7e�Ë�ÅÃ7�ôùÆèô.e¬åRÝ�à�ôùËjuwO � & (.O × w°§D�
ª �<�t�<«#«�¬�b®	~q¯#�>¥�ü�úcO � È�O × ÈzO { �rüÎ�Ëü4��s��þ�ürü4�v�rü<�J�-ü��o�ú£�Sú}ü#�o�#�D�rû�ú�û���úmO ×?£ O � ÒO {�£ O � Ò=�3�c��O × §Mö3O { §CÓì7û¼ü<��uwO � & (.O × w@§MöýuxO � & (.O { w°§cÓ
���b�q�<ç[Z æ ó¼ó ì+Ú�â½Üi×��?Û�àÎë�ã�à ó à'Ý�ÜdÛ�Üià'×ÎÃ¼å

uxO � & (.O × w°§
ö O � ¼kuwO × §hw
ö O � ¼kuwO { §hw
ö uwO � & (.O { w@§»7

xPì�Ü½×:Û�ã�à5ëËç¼á�ì�Ý�à	�?ì�×Ëà»Û�ÚSÛ�Üià'×!í�à»ãZÛ�Ù¼ì ó ã�à:à»í-ÝhÛ�Ù¼Ú�Û¹í�à»â½â½àSØe��é©Üiö'ì�×¯Ú\ÞRì>âiÜ½ì�í�Ý�Û�Ú�Û�ì
u^Å È;��w�å�â½ì�Ûxw ÞRì¯ÚPÛ�à»Û�Ú»âhà'ã�ëËì�ã?àSö»ì>ã\Ý�çËÞ¼Ý�ì�ÛrÝÆà»íkÅ Ý�ç¼árÙLÛ�Ù¼Ú�Û?Üií/ÊÛÈ�ÊyeEvÖÅ å
Êzw Êye�Üs¥
ð	�;Ê Ú�×¼ëoÊye�Ú»ã�ì©×Ëà»×��;ì�� ó ÛUß»å
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}M�;Ê Ú»×¼ë�Êye�Ú�ã�ì²u-×Ëà�Û§×Ëì>á�ì>Ý�Ý�Ú»ã�Ü½â½ß²�¿Ú3y�Ü��¿Ú�â�w�ì�q:çËÜ½öSÚ�â½ì�×¼á�ìÆÝ�ì�ÛrÝ�åHÜ&� ì��iåHí�à'ã%ì>ö»ì�ã�ß
ôªËIÊ Ú�×Rëoô7e1ËjÅ åHÜdíNô7e1ËIÊ Û�Ù¼ì�×�ôÃ�Áô7e�Ú»×¼ëoô7eF�óôÖu-Ú»×¼ëÅÝ�Ü��?Ü½â½Ú»ã�â½ß
í�à'ã�Êye�w�å¼Ú�×¼ë

ñ��ZØhà»ã�â½ë¼ÝZÜi×�Ê Ú�ã�ì�Ý�Û�ã�Ü½á�Û�â½ß ó ã�ì�í�ì>ã�ì+ëWÛ�à Øhà»ã�â½ë¼Ý�Üi×�Êye¬å¼Ü&� ì	�½å¼í�à'ã¹ì�ö'ì�ã�ß�ô � Ë�ÊÚ»×¼ë�ô × ËoÊye¬å�ô � �èô × �
�ZÙ:çRÝ�åRØ�ì�á>Ú�×Qã�ì ó ã�ì>Ý�ì�×:Û�Û�ÙËìBÞRì>âiÜ½ì�í�Ý�Û�ÚSÛ�ì>ÝµÜi×oØ�Ü��'çËã�ìBñ¿Ú»ÝÐ$ùö ÷£¿�÷.wÜ÷4{c¿C4²ûM÷�w
÷U{c¿»4|{�û�÷SåÍ"¸öÖ÷<û�÷*wÌ÷U{c¿»4|{�û�÷-wÌ÷£¿»4|{�û�÷Så�Ú�×¼ë+= öÖ÷<ûM÷-wÌ÷U{�û�÷3�¿æ¹é§î
ã�ì(q'ç¼Üiã�ì>ÝhÛ�Ù¼ÚSÛ�u#$~}/u#"�}�=�§Tw#§hw#§TöÉ÷U{c¿C4�{�û�÷3�ZÖ}×Qì>Ú'árÙQà�í�Û�ÙËì�í�à'âiâ½àSØ�Ü½×�� ó ã�à:à»í-Ý�å¼Ø�ìÝ�ÙËàSØFÛ�Ù¼Ú�Û¹âiì�í ÛµÚ»Ý�Ý�à�á�Ü½Ú�Û�Ü½à»×��'Üiö'ì>ÝZÚ�×QÜ½×¼á�à'×¼Ý�Ü½Ý�Û�ì>×'Û�ã�ì>Ý�çËâiÛ>åËÝ ó ì+á�Ü�rRá�Ú»âiâ½ß»åF÷�¿m4M{�û�÷�
ÛC��Üq����«#�����XÝÞ�m�Í¬��Ü��t¬Z«.�t��ßÌ��������� �ZÙËì©×¼ÚSÛ�çËãrÚ�â7ã�ì>ö:Ü�Ý�Üià'× à ó ì�ãrÚSÛ�à»ã�} � Ü�ÝZë�ì<rR×Ëì>ëWÚ»Ýí�à»â½âiàSØ¹Ý��

���������������>ö væ�.� ö u^Å È;��w%�L������üa�J�-ü��e�ú£�Sú}ü#Òhú û¼ü<�Ûu���}���¿cw=ö u^Å È;�'eLw%�L�Bú û¼ü
��üa�J�-ü��k�úX��ú�ü§þ�ü#�#�M�zú&���h���rþ�ý3� ú û¼üt�c��ú���þR��Cþ�üa���L�#�-ý3��ý��'� ��ÿ���ü<�Rú�üa�c�rüH¿¢� �t��c� ý�D�zÿ�� �
��ýSþÇ�3���Cô � È�ô × 0Ë��\Ü½×Fu��eÈ^¿Cw4ÒHô � �'eCô × � ¤óô � �Ùô × ��c�3Ò*��ÿWú�ûËü�÷Æøhù¸�¼ý!�ú&�M���Sú}ü<��Ò
��ýSþ������ô � Ë��\Ü½×8u��eÈ^¿cw%�3�c�%ô × ËoÅpÒ�ô � � e ô × Ó
���b�<�F���������#�<�>�Öì7û¼üZþ�ü<�#�M�zú����T�t��üa�J�-ü�����ü�ú^�1�T�#���h�Â�iü��rú8�3�C�%þ#�s�+û�úB�3�4��ý(�a�^�Sú&�-ý3��ý��*á%ý3��ú&���J�-ü�þZâ �
�c�Sú&��þR��Cþ�ü<�(�L�#�-ý3� ý��¼ü�þ��Sú}ýSþ4���4�3�Û��ü%���c�rý���#�L�ú�üa�¼ú£Ó
���b�q�<ç[Z æ ó¼ó âiß5Ü½×��WÛ�ÙËì\à ó ì�ãrÚSÛ�à»ã�Û�à Û�Ù¼ìÆÞ7ì�â½Üiì�í�Ý�Û�ÚSÛ�ì>Ý1$/È\"ÎÈ\=\åCØhì%�'ì�Û�u�u�$�}��:"m§
w�}=�i=�§Tw@§Möp÷�¿�4*{�û�÷µØ�ÙËÜ�árÙ Ü½Ý�Ü½×¼á�à'×¼Ý�Ü�Ý�Û�ì�×:ÛhØ�ÜdÛ�Ù Û�Ù¼ì%ã�ì>Ý�çËâiÛ�à�í�ã�Ü��»Ù:ÛhÚ'Ý�Ý�à�á�Ü�ÚSÛ�Ü½à»×8�

�¬�bã»��äbåÍ��¬,��æ ���X¬�t«��8ÝÐçx�,�tè!Ü�«#¬���#�<� Ä"ì�Û8� ö u^Å È;��w©Þ7ì ÚQÞ7ì�â½Üiì�í�Ý�Û�Ú�Û�ì'å\¿
ÞRì�Ú?Ý�ì>×:Û�ì�×Rá�ì§Üi× À �.é©Ú�ã�Ø�Ü�árÙËì©Ú»×¼ë�ë)ì>Ú�ã�âHÝ�ç����»ì+ÝUÛ�Ú?Ý�ì�ÛZà»í ó à'Ý�Û�çËâ�ÚSÛ�ì>Ýeu¬Ý�ì>ì?ïið�{SòCí�à»ãÛ�ÙËì>Üiã�ì�×5ç��?ì�ãrÚSÛ�Üià'×\w7Û�à%Ý�ç ó¼ó âiì��?ì�×:Û�Û�Ù¼ì�æ¹é§î ó à'Ý�Û�çËâ�ÚSÛ�ì>ÝHí�à'ã"ÜiÛ�ì>ã�Ú�Û�ì>ë§ã�ì�ö5Ü�Ý�Ü½à»×"å�Û�ÙËì�×Ý�ÙËàSØ�Þ5ß?ØhÚ/ßÆà�í"ÚBã�ì ó ã�ì+Ý�ì>×:Û�ÚSÛ�Üià'×\Û�ÙËì>à»ã�ìa� Û�Ù¼Ú�ÛhÚ�×Wæ¹é§î¥à ó ì�ãrÚSÛ�à»ã�}��q�ÀÝ�ÚSÛ�Ü�Ý�í�ß:Ü½×��Û�ÙËì ó à'Ý�Û�çËâ�ÚSÛ�ì>ÝZà'ÞRì>ß5ÝhÛ�ÙËì§í�à»â½â½àSØ�Üi×��?ã�çËâ½ì>Ý��
ð	�ZÖ�íHô � õ öI¿ÅÚ�×Rë�ô × õ öI¿"å5Û�Ù¼ì�×�ô � �èô × Ü�¥�ô � �'eMô × �
}M�ZÖ�íHô � õ ö�{c¿ÅÚ�×Rë�ô × õ ö�{c¿"å�Û�ÙËì�×�ô � �¢ô × Ü�¥�ô � �'eMô × �
ñ��ZÖ�íHô � õ öI¿ÅÚ�×Rë�ô × õ ö�{c¿"å�Û�ÙËì�×�ô � �èô × à'×ËâißWÜdí�Ú�×Rë�ô � �'eMô × �
ÃD�ZÖ�íHô � õ öI¿ÅÚ�×Rë�ô × õ ö�{c¿"å�Û�ÙËì�×�ô � �èô × à'×ËâißWÜdíHô � �'eMô × �

Ø�ÙËì�ã�ìÇu���} �q� ¿Cw1öêu^Å È��'e�whÜ�ÝZÛ�Ù¼ì�ã�ì+Ý�çËâiÛ�à�í)ã�ì>ö5Ü½Ý�Üi×D�-� Þ:ß�¿8�
���b�<�F���������#�<�?¡¸ì7û¼ü\þ�ü<�4�M�dú����T���rü<�s�-ü^�/��ü�ú��k�T�#���h���iü��rú;�3�c� þ#�s�+û�ú;�!�4��ý��a�^�Sú&�-ý3� ý����3�¼ÿ
þ�ü<�(�L�#�-ý3�Pý4�Ëü�þR��ú�ý�þ4�Â�a�Sú&�L�æ�rÿ3���h��ú û¼üÐê��Sþz���^�rûËü��3�c�më¹ü���þ#�h�Ëý3�ú��M����ú�ü<�/������rüt���c�rý3�D�#�L�4�
ú�üa�¼ú£Ó
���b�q�<ç[Z Ä�ì�Û_} �q� Þ7ì%Ú�×Wæ¹é§î¥à ó ì�ãrÚSÛ�à»ã�Û�Ù¼ÚSÛhÜ½Ý�Ú/�?ìa�ÆÞRì>ã�à�íCÛ�ÙËì%Ú»ÞRàSö'ì�í-Ú�?Ü½âiß\à�íà ó ì�ãrÚSÛ�à'ã�Ý��8�ZÙËì>×�å	�'Üiö'ì�×�$/Èh"�È\= Ú»Ý�Ú»ÞRàSö'ì»åSÞ5ß�Û�Ù¼ì�Û�ÙËÜ½ã�ë\ã�çËâiì/÷�¿F4.{�û�÷'w ÷4{c¿F4.{�û�÷
Üi×�$J} � "©§¼å"Ý�àju�u�$J} � "©§Twq} � =c§hw\§Mö ÷£¿»4|{�û�÷\Ø�ÙËÜ�árÙPÜ�Ý§Üi×Rá�à»×RÝ�Ü�ÝUÛ�ì�×:Û§Ø�ÜdÛ�ÙPÛ�ÙËì
ã�ì+Ý�çËâiÛ�à�í)ã�Ü��»Ù:Û¹Ú»Ý�Ý�à5á�Ü½Ú�Û�Ü½à»×��
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ì �F��åÍ�FÝí��ä8�<�ÍæÍ�°���#�<�Í¬Z«#��îV¬Z������� Ä�ì�Û�� Þ7ì§Û�ÙËì�Ý�ì�Û¹à»í�à'ã�ë�Ü½×¼Ú»â½Ý��

���������������>þ�÷Â� à»ãrë�Ü½×¼Ú�âCá�à'×¼ë�ÜiÛ�Ü½à»×¼Ú»âHí�çË×¼á�Û�Ü½à»×ju&�eÍbØ�wt�L�%�3�Rÿ;�4�M�c��ú��-ý��ï��	Å RT�®�4�D�rû\ú�û���úH�TôêËoÅÃ7�ïFuæôÂwNöþ{\Ó�¦"ý�þ1Ê�vvÅÉÒq��ü��'ü^Ð7�7ü�ï8u&Êêw1öþ�?Ü½×s���=��ï8u^ôÂwaÓ
ì7û¼ü���üa�J�-ü��t��ü�úZý��%��/y:%q¦Ù�L�ÐïV§Töùø�ôùË¦Ê õVï8u^ôÂw7öÙ{MúTÓ

�������������������|¥�ü�úFïþ�rüÎ��?y�%q¦bÓ�}��è�L����:���}á�à'×¼ë�ÜiÛ�Ü½à»×¼Ú»âiÜ��>Ú�Û�Ü½à»×¯à ó ì�ãrÚSÛ�à»ã�� ¤ �
�L�/�Î�7ý�D�#ò+ü�þ�ý�ýSþ��3���c�����c�!Òc��ýSþ%�3�Rÿ���ü<�Rú�üa�c�rü�¿oË À �3�c�²�3�RÿeôêË�ÅÉÒ

u#ïE} � ¿cwauæôÂw7ö�� ï8u^ôÂw��+ï8us¿cw � ��ôpõ öj¿
�M��ï8u^ôÂw��+ï8u�{c¿cw � ��ôpõ ö�{c¿

���b�<�F���������#�<�>ñÖì7û¼ü\þ�ü<�4�M�dú����T���rü<�s�-ü^�/��ü�ú��k�T�#���h���iü��rú;�3�c� þ#�s�+û�ú;�!�4��ý��a�^�Sú&�-ý3� ý����3�¼ÿ
��ý���a���c��ú��-ý��ý��Ð�N����ý�c�� ú��-ý�c�3�s�Þò���ú��-ý� ý��¼ü�þR��ú�ý�þ4���4�3���rü/���c�rý3�D�4�L�ú}ü<�RúXÓ
���b�q�<ç[Z Ä�ì�Ûlï��7È�ïs��È\ï���ÞRì¹Û�ÙËìe�eÍbØ�Ý�ã�ì ó ã�ì+Ý�ì>×:Û�Ü½×���ÞRì>âiÜ½ì�í�Ý�Û�Ú�Û�ì>Ýa$/È\"ÎÈ\=\å:ã�ì>Ý ó ì+á#�Û�Ü½ö»ì�â½ß»å�Ý�ç¼árÙ�Û�Ù¼ÚSÛiïs�=us¿�4�ûw�öGïs�=us¿�4K{�û3w�ö {��Hï��=u�{c¿�4�ûw��Hïs�=u�{c¿%4W{�ûw�å
ïs�ÂuJ¿»4�ûwÂöÃïs�Âu�{c¿i4�ûwÂöÉ{6�|ï���u�{c¿i4�{�ûwm�|ï���us¿©4|{�û3w�å�Ú»×¼ëNï��;uJ¿»4�{�ûwtö
ïs�;u�{c¿%4~{�ûw�ö {J� ïs��uJ¿%4jû3w�ö ïs��u�{c¿%4jû3w<�ÙÄ�ì�ÛL}�� n Ú�×¼ë�}�� p ÞRìÅÚ»×:ß ÛUØ�à���}á�à'×¼ë�ÜiÛ�Ü½à»×¼Ú»âiÜ��>Ú�Û�Ü½à»×Qà ó ì�ãrÚSÛ�à»ãrÝa��Ö�ÛµÜ�Ý¹ì+Ú»Ý�Üiâ½ß�Ý�ì�ì>×QÛ�Ù¼Ú�Û�u#ï���}l� n uwïs�|}�� p ïs��§hw#§Tw�§Mö÷U{c¿F4�{�ûM÷�1�¹àSØ�å�Þ5ßcé%ì<rR×ËÜdÛ�Üià'×Qð�{Ëå\u#ï��7}l� n ï��q§Tw<uJ¿F4�{�ûw��ùu#ï��'}l� n ï��Ì§Tw<u�{c¿F4�{�ûw#��5çËÞ¼Ý�ì�q:çËì>×'Û�á�à'×¼ë�ÜiÛ�Ü½à»×ËÜ½×��WÞ:ß:ï��*§�çRÝ�Ü½×��WÛ�ÙËì©� × à ó ì�ãrÚSÛ�à»ã ó ã�ì+Ý�ì>ã�ö'ì>ÝZÛ�ÙËÜ�Ý%à'ã�ëËì�ã�Üi×��Ú�×¼ë ó ã�à5ëËç¼á�ì+ÝhÛ�ÙËì�Þ7ì�â½Üiì�í�Ý�ì�Û/÷�¿c4�{�ûM÷�
õF�Xå�è/¬Z���aÝÞ��çx�,�tè!Ü�«#¬���#�<� x�ì�ã�ì�í�ì�ã�Û�ÙËì�ã�ì>Ú'ë�ì�ãHÛ�àBïdð(|/ò�í�à'ãCÛ�ÙËì ó à:ÝUÛ�çËâ½Ú�Û�ì+Ý�Ä�ì>Ù��¿Ú�×Ë×
ó ã�à ó à:Ý�ì+ÝZÝ�ÙËà'çËâ�ë��'àSö»ì�ã�×¿Û�ÙËì�ÞRì>Ù¼Ú/ö5Üià'ãZà�í�Ú?Ý�ì�q:çËì>×¼á�ì§à�í�ã�ì>ö5Ü½Ý�Üià'×¼Ý���Ä"ì�Ù��¿Ú�×¼×��'Üiö'ì>Ý
�\à�ë�ì>âs�;Û�Ù¼ì�à»ã�ì�Û�Ü½á�Ý�ìa�¿Ú»×'Û�Ü½á>Ý�Ü½×¿Û�ì>ãR�¿Ý�à»í����^�'ü<�\���h�?þ��3�TÑ%�¿ý��'ü<�J�rå�ë�ìar¼×Ëì+ë?ÞRì>âiàSØe��ÞµÝ��
Üi×���Û�ÙËì+Ý�ì;�?à�ë�ì>â½Ý>å»ÙËì%ë�ì>Ý�á�ã�ÜiÞ7ì>Ý�Ú§ã�ì+á�çËãrÝ�Üiö'ì¹ë�ì<r¼×¼ÜdÛ�Üià'×?í�à»ã�á�à	� ó ç�Û�Üi×���Û�ÙËì%ÞRì>âiÜ½ì�í�Ý�ì�ÛÛ�Ù¼Ú�Û¹ã�ì+Ý�çËâiÛ�Ýhí�ã�à	� Ú\Ý�ì�q:çËì>×¼á�ì§à»í�ã�ì�ö5Ü�Ý�Ü½à»×¼Ý�Û�Ù¼ÚSÛ¹à'ÞRì>ß¿Û�ÙËì ó à'Ý�Û�ç¼â½Ú�Û�ì>Ý��

�����������������<�F÷ Ø�Ü�ë�ì�×¼Üi×��!ãrÚ�×Ëäo�?à�ë�ì�â��L�Ç�e�4�M�C��ú&�-ý3�Y051 �=� RTÜ}�� �7¡��4�D�rû
ú ûD�Sú
� Ó7��ý�þ%�3�¼ÿ�·�Èa¢ Ë-�ÁÒ7� ��·D�J¢ ú û¼ü<��051�u°·8w�v£0-1�u¤¢�w#ÒN�3�c�
� Ó7��ý�þ%�3�¼ÿeôêË�ÅÉÒ�ú û¼ü�þ�ü/�L�t��ý3�¿ü5·�Ë5�Ì�#�D��û¯ú ûD�Sú�ôÁËy051%u�·8w4Ò

Ø�ÙËì�ã�ì�� Ü½Ý�Ú¹Ý�çlk á�Ü½ì�×:Û�â½ß%â½à»×D��Üi×ËÜiÛ�Ü�Ú�â5Ý�ìa�	�?ì>×'Û�à»í5Û�ÙËì�à»ãrë�Üi×RÚ�â�Ýa��Ø¼à»ãD¿oË À å/Øhì�ë�ìar¼×Ëì
þR�3�MÑBuJ¿Cw1ö=Ú»ãR���?Üi×s¥l�4¦¦uæôêËy051%u�·8wÌ4²ôpõ öj¿Cw#�1�ZÙËì§Þ7ì�â½Üiì�í�Ý�ì�ÛD051a§Tö§051�u^{hw#�
Ä�ì�Û�¨�ÞRì\Ú Ý�ì(q:çËì�×¼á�ì�à�í�Ý�ì�×:Û�ì>×¼á�ì+Ý¹Ü½× À Ø�Ù¼ì�ã�ì�¡?Ü½ÝµÛ�Ù¼ìBìa� ó ÛUßQÝ�ì�q:çËì�×Rá�ìBÚ»×¼ëK©Ü½ÝZÛ�ÙËì�á�à'×¼á�Ú�Û�ì>×¼ÚSÛ�Üià'×�à ó ì�ãrÚSÛ�à»ã(�


�����������������I ø=���Sü<�j�i���^�'ü<�\���h�!þR��TÑ��¿ý��'ü<�.0-1%Ò�ú�ûËü��rü<�s�-ü^�/��ü�úZþ�ü<�4�M�dú����T���rþ�ý�
ú û¼ü�þ�üa���L�#�-ý�¦��ü4Ï<�¼üa�c�rü/�rýSþþ�ü#�&�¼ý3�c����h��ú�ý#¨v��c� ý��rü�ÿ3���T��¥�ü�ûM����D��â �N�Ëý3�rú&�M����ú�ü<�4Ò1�'ü<�
�7ýSú}ü4� ï ¨7ò�ª'«1Ò1�L�`¬1u¤¨�w��»ü�Ð1�Hü�� þ�ü4�<��þ4�#���Sü<�dÿ²�!�1��ý3���½ýt�H�;u
� Ó;ûMu�¡�w7öþ{��3�c��¬1u�¡�w1ößÅ��u�{�waÓ
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� Ó5v^�:®ß�L������ü<�Rú�üa�c�rüÎ��ü�Ïa�¼üa�c�rü#ÒF¿[Ë À Òe�3�C�Åú�ûËü�þ�ü!üa>��L�ú^�eôÖËJ¬1u9®DwÎ�4�D�rû�ú�û���ú
ôýõ öj¿8Ò�ú û¼ü<�²ûMu9®5©�¿Cw7övûMu9®Dw���c�E¬1u¤®5©�¿cw1öêø�ôùË�¬1u9®Dw�õ3ôýõ öj¿8úTÓ

� ÓiyZú�ûËü�þz���L��ü<Ò�ûMu9®|©a¿cw��L�!ú û¼ü��#������iü<�rú5·°¯ ûMu9®Dw��#�D�rûÂú ûD�Sú�ú�ûËü�þ�üÅü[>��L�ú^�%ô Ë051%u�·8w%��c�%ôêõ öI¿�ÒN��c�E¬1u¤®5©�¿Cw1öÁø�ôêË±051�u�·8w*õ!ôpõ öj¿8úTÓ
��ûËü�þ�üÂû¦���4�\��þ�üa�(�L�4�-ý����ü4Ïa�¼ü<�C�rü#��ú}ýWý�þR�3���C�3���4Ò;�3�c��¬ß�Ç���c��þ�ü<�(�L�#�-ý3����ü4Ï<�¼üa�c�rü<�§ú}ý
�4�D�<��ü�ú���ý��;Å Ó
�ZÙËÜ½Ý ó ã�à�á�ì+ë�çËã�ì%Ü�Ýhì�q:çËÜ½ö/Ú»âiì>×:Û�Û�à\ÜiÛ�ì>ã�Ú�Û�Ü½ö»ì>âiß¿Ú ó¼ó âiß5Ü½×��ÆÛ�ÙËì©í�à»â½â½àSØ�Üi×��Æã�ì>ö5Ü½Ý�Üià'× à ó ì�ãR�ÚSÛ�à'ãZÛ�à\Û�Ù¼ìe�\ì��BÞ7ì�ãrÝZà�í¨H�

�����������������Xp v^�8051ê�L�;�����^�'ü<�\���h�BþR�3�MÑk�?ý(�»üa�Rý�/ü�þ�ÅpÒ�ú�ûËüa� ú�ûËül���^�'ü<�\���h�BþR�3�MÑ
�?ý(�»üa�Fu?0-1~}=²�¿cw�þ�ü#�#�M�zú&���h���rþ�ý3� ú�ûËüBþ�ü<�(�L�#�-ý3� ý��D051 ��ÿÇ��üa�¼ú}ü<�C�rü�¿I�L���'ü^Ð7�7ü4���3�
��ý3���iý �H� u
� Ó%u?0-1~} ² ¿cw<u�{�w1öêø�ôùË�Å õ!ôpõ öI¿è�3�C��ôêË�051�uUþR��TÑ�uJ¿cwRw4úMÓ
� Ó1¦�ýSþ%����Z·�Ë5�Ì�#�D�rûQú�û��Sú�·³¯v{MÒ7u?0-1~} ² ¿cwau°·8w1ö´0-1�uUþR��TÑ8uJ¿Cw��+·8w�Ó

Ä�ì�Û�0-1�µ1ÞRìÅÛ�ÙËìÅã�ì>Ý�çËâiÛ�à�í�ç¼Ý�Ü½×��~}�²AÛ�àLÜdÛ�ì�ãrÚSÛ�Ü½ö»ì>âißÂã�ì>ö5Ü½Ý�ìY0-1 Þ5ßÂá�à»×¼Ý�ì>á�ç�Û�Ü½ö»ì
�\ì��BÞ7ì�ãrÝ�à�í`¨)å�Û�Ù¼Ú�ÛBÜ½Ý>å*0-1.¶²ö·051 Ú»×¼ëCå�ã�ì+á�çËãrÝ�Üiö'ì�â½ß»å#051 µ=¸ ¹ ö·051 µ } ² ¿�í�à»ã
Ú�×5ß/¿oË À �1Ä�ì�Û�þR�3�MÑ µ us¿cwhÞ7ì§Û�ÙËì�ãrÚ�×Ëä¿à»íc¿QÜ½×y0-1 µ �
õF�Xè�è�¬NI ¥�ü�úW051 �rü������^�'ü<�\���h�1þR��TÑI�?ý(�»üa��Óºì7û¼ü<�J¬1u¤¨�w�öº0517µBu�{�w4Ò���c�
��ýSþ�����a· ËY� �#�D��ûFú�û���ú1·£¯ {MÒ»0-1�uæûMu�¨�w7��·8w�ö¼0-1�µCu°·8w�Ó v<�I�D�Sþú&�^�a�M���Sþ4Ò
ï ¨7ò/ª`«�ö´0-1�µb§cÓ
���b�q�<ç[Z �ZÙËì ó ã�à5à�í�Ü½Ý�Þ5ß Ü½×¼ë�çRáÛ�Ü½à»×Qà'×�Û�ÙËì�âiì>×���Û�ÙQà�í�¨H�ÛC¬Z���6äV¬,���HZZÖ�í�¨oö�¡�å5Û�Ù¼ì�×y0-1ÁöB051 µ å¼Ý�à¬1u¤¨�w

ö 051�u�{�w
ö 051.µBu�{�w 7

ØËçËã�Û�ÙËì>ãR�?à'ã�ì'å5í�à»ã¹Ú�â½â�·W¯[{¼å 051�u^ûMu¤¨�w��+·8w
ö 051�u°·8w
ö 051�µcu�·8wz7½ ��æÍÜÍä ����ß<��äV¬Z���HZ��5ç óËó à:Ý�ì5¬1u�¨�weö�0-1 µ u^{hw§Ú�×¼ëÀí�à»ã�Ú»âiâ*·�¯p{Ëå#051�uæûMu¤¨�w_�

·8wNö¾0-1 µ u°·8w<�Nx�ìBÝ�ÙËàSØ Û�Ù¼Ú�Û7¬1u¤¨�©R¿cw7ö¾051 µ=¸ ¹ u�{�wZÚ�×Rë!í�à»ãµÚ»âiâÌ·K¯þ{Ëå.0-1�uæûMu�¨D©
¿cw���·8w1ö§051 µ=¸ ¹ u�·8whØ�ÙËì�ã�ì=¿oË À �

Ø�Ü½ãrÝUÛh×Ëà�Û�ì¹Û�ÙRÚSÛ%þ��3�TÑ µ uJ¿Cw1öþûMu¤¨-©�¿cwR��ûMu¤¨�w<��Ö�í�þR��TÑ µ us¿cw1öÙ{Ëå'Û�ÙËì>× Û�ÙËì�ã�ìµìay5Ü�Ý�Û�Ý
ô Ë�051 µ u�{�w©Ý�çRárÙÅÛ�ÙRÚSÛeô õ öÙ¿8��9�ßÅÛ�ÙËì?Ü½×¼ë�ç¼á�Û�Ü½ö»ì?Ù5ß ó à�Û�ÙËì>Ý�Ü�Ý�åBôðËC¬1u¤¨�w§Ý�à¼åCÞ5ß
éµìar¼×ËÜiÛ�Ü½à»×Åð!}�å	ûMu�¨#©L¿cw7öþûMu¤¨�w�Ú�×¼ëQþR��TÑ¿µcus¿cw7ößûMu¤¨�©�¿Cw¿��ûTu�¨�w#�b�%×?Û�ÙËì¹à»Û�ÙËì>ã�Ù¼Ú�×RëCå
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Üdí�þR��TÑ µ us¿cwNöJ·K¯þ{Ëå5Û�Ù¼ì�×QÛ�Ù¼ì�ã�ì�ì<y�Ü½Ý�Û�Ý;ôêËY0-1 µ u°·8wböB051�uæûMu¤¨�w��+·8wZÝ�ç¼árÙ!Û�ÙRÚSÛ
ôºõ öp¿8�Àî¯à'ã�ì>àSö»ì>ã>å"í�à»ãÆÚ»âiâNô ËB051 µ u�{�w�öÀ¬1u�¨�wå�Ú»×¼ë�í�à'ãÆÚ�â½â7ô ËB0-1 µ u°·qe�w�ö0-1�uæûMu�¨�w��	·qe�w§Ý�ç¼árÙPÛ�Ù¼Ú�Û/{:�|·qe��|·�å�ô õ ö�{c¿F���ZÙ5ç¼Ý>å�ûMu¤¨³©#¿cwkö ûMu¤¨�w��	·�å�Ý�à
þR�3�MÑlµBuJ¿Cw1ö>·¦övûMu�¨�©�¿cw���ûMu¤¨�w<�
�5ç óËó à'Ý�ì�ôêËM¬1u¤¨-©�¿cw#���ZÙËì>×�ôýõ öj¿F�)Ö�í�Û�ÙËì>ã�ì%ì<y�Ü�ÝUÛrÝ7ô7e8Ëx¬1u�¨�whÝ�ç¼árÙ Û�Ù¼Ú�ÛNô7e�õ ö

¿"å5Û�Ù¼ì�×�Þ5ß�é%ì<rR×ËÜdÛ�Üià'×Pð!}�åhûMu¤¨x©&¿Cw1öþûMu�¨�wå¼Ý�àWþ��3�TÑ¿µBuJ¿Cw1öß{\Ú�×¼ë�å:Þ5ßié%ì<r¼×¼ÜdÛ�Üià'×Pð+ñËå
ôêË�051�µ=¸ ¹�u�{�w<�1�µÛ�ÙËì�ã�Ø�Ü�Ý�ì'åMûTu�¨M©�¿cw7ö>·³¯[ûMu¤¨�wZÜ�ÝhÛ�Ù¼ì�Ý��¿Ú�â½â½ì>Ý�ÛZà'ã�ëËÜi×¼Ú»âCÝ�ç¼árÙWÛ�ÙRÚSÛ
Û�ÙËì>ã�ì?ì<y�Ü�ÝUÛrÝtô e ËÀ051%u�·8w§Ú�×¼ë�ô e õ öó¿"å�Ú�×¼ë³¬1u¤¨³©4¿cwtö ø�ôðËÁ0-1�u°·8w�õ\ô õ öÁ¿8ú��
�ZÙËì�ã�ì�í�à'ã�ì'å

ôêË±051�u^ûMu¤¨�©�¿Cw�w
ö 0-1�uæûMu¤¨�w��=þR�3�MÑ µ uJ¿Cw�w
ö 0-1 µ uUþR��TÑ µ uJ¿cwRwz7

Ú�×¼ëCå¼Þ:ß�éµìar¼×ËÜiÛ�Ü½à»×�ð>ñ¼åMôêË�051 µ=¸ ¹ u�{�w#�
�5ç óËó à'Ý�ì�ôêË�051 µ=¸ ¹ u�{�w<�F�ZÙËì>×eôpõöI¿�Ú�×RëÂôêË±051 µ u�þR�3�MÑ µ us¿cw�w<�"Ö�íCþR��TÑ µ us¿cw1ö

{Ëå5Û�Ù¼ì�×�ûMu¤¨�©�¿Cw1öþûMu�¨�w�Ú�×¼ë
ôêË±0-1�µCu^{hw
ö ¬1u¤¨�w
ö ¬1u¤¨�©�¿cwz7

�µÛ�ÙËì>ã�Ø�Ü�Ý�ì'åCþR�3�MÑ µ us¿cw�¯v{ËåËÝ�à�ûMu�¨�©�¿cw�¯[ûMu¤¨�w�Ú»×¼ë
ôêË±051 µ u�þR�3�MÑ µ us¿cw�w
ö 0-1�uæûMu¤¨�w��=þR�3�MÑ µ uJ¿Cw�w
ö 0-1�uæûMu¤¨�©�¿cwRw

Ý�à�ôêËM¬1u¤¨�©�¿Cw#�1�ZÙËì>ã�ì�í�à»ã�ì»ål¬1u¤¨M©�¿Cw7ö§051 µ=¸ ¹ u^{�w<�
�¹àSØ¾âiì�Û5·~¯ó{¿í�à»ã©Ý�à��?ìm·IËx�ù�k�ZÙËì�×"åHÝ�Ü½×¼á�ì þ��3�TÑ µ uJ¿Cw=öùûTu�¨D©�¿cw�jûMu�¨�wåCÞ5ß

éµìar¼×ËÜiÛ�Ü½à»×�ð>ñ 051�uæûMu¤¨�©R¿cwq��·8w
ö 051�uæûMu¤¨�w��Aþ��3�TÑ¿µBuJ¿Cw��+·8w
ö 051�µCuUþR��TÑsµcus¿cw���·8w
ö 051 µ=¸ ¹ u�·8w

Ø�Ü½×¼Ú»âiâ½ß»å�ÜiÛ�í�à»â½âiàSØ¹ÝhÛ�Ù¼ÚSÛ
ï ¨7ò ª'«
ö ¬1u�¨�w
ö 051 µ u^{�w
ö 051 µ §©7
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÷�¿c(�û�÷ � �6·¦ö	ð
Å ý�ú û¼ü�þz���L��üTÈ

051 � u°·8w1ö�ÂÄ Å ÷#û�÷ � �6·¦öß{
÷U{c¿c(²û�÷ � �6·¦ö�ð
Å ýSú�ûËü�þz���L��üTÈ

Ú�×¼ë 051��*u°·8w7ö � ÷4{�û�÷ � �:·�öÙ{
Å ýSú�ûËü�þz���L��ü

Ø�ÙËì�ã�ì�·�Ë5�ù�b�ZÙËì�ã�ì+Ú»ë�ì>ãZØ�Üiâ½â"ì+Ú»Ý�Üiâ½ß�á�à'×Mr¼ã���Û�ÙRÚSÛ�u?0-1��x} ² u?0-1��D} ² 051��Ì§Tw°§
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÷G�#«�«#��¬Zè��8ÝÍ�;�t¬Z�Í��è!Üq��¬���#�<�Í� Ö�Û%Ü�Ý%ì>Ú»Ý�ßWÛ�à�ö'ì�ã�Üdí�ßWÛ�ÙRÚSÛ©Û�ÙËìBí�à»â½âiàSØ�Ü½×���ë�ìar¼×ËÜiÛ�Ü½à»×
à�í�Ú»ë!ÚUç¼Ý�ÛR�?ì>×'Û¹à ó ì>ã�Ú�Û�à'ã�Ý�Ü½Ý¹ì�q:çËÜ½ö/Ú»âiì>×:ÛhÛ�àÇxAÜiâ½â½Ü½Ú	��
 Ý�� Æ
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�7ý3�\�#ò+ü�þ�ýWýSþR����c����3�C�!ÒD��ý�þ��3�Rÿ���üa�¼ú}üa�c�rü�¿oË À ��c���3�¼ÿeôêË�ÅÉÒ

uwïE} Ç ¿cwauæôÂwbö ÂÈÈÄ ÈÈÅ
{ � ��ôpõ öÛ¿[��c�:ïFuæôkw7öJïFuJ¿Cw
� � ��ôpõ ö�{c¿8È��3�C�

ïFuæôÂw��/� ý�þ�ï8u^ôÂw7öJïFu�{c¿Cw
ïFuæôkw ý�ú û¼ü�þz���L��ü�7

���b�<�F���������#�<�?þ¸ì7û¼ü\þ�ü<�4�M�dú����T���rü<�s�-ü^�/��ü�ú��k�T�#���h���iü��rú;�3�c� þ#�s�+û�ú;�!�4��ý��a�^�Sú&�-ý3� ý����3�¼ÿ
��ý���a���c��ú��-ý��ý����1�����^ø#�T�ú��¿üa�¼úhý4�Ëü�þR��ú�ý�þ4��������rü/���C�rý3���#�L�ú}ü<�RúXÓ
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uwïs�x}?Ç n "�§Tw<uJ¿c4�{�ûw
ö � �� uwï � } Ç n "�§Tw<us¿c4x{�ûw
ö ï � u�{c¿C4�{�ûw

Ý�àou�uwïs�x}(Ç n ïs�q§hwR}(Ç p ï���§hw°§Töp÷£¿c4�{�û�÷3�É ����,� b,�'�'*O l P#?!0hW �#¡4� ST@� #582b,&+�:*+��J245\)!'£U3.!+ ��+� #.hW
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���b�<�F���������#�<�'���
uwO � & 4.O × w<uæô � È�ô × w1ö'O � u^ô � ÈRô × w � O × u^ô � È�ô × waÓ
���b�q�<ç[Z �5ç ó¼ó à:Ý�ì�ô � ÈRô × Ë¢Å å"Ú»×¼ë+O � Ú»×¼ë�O × Ú»ã�ì\Üi×Rë�ç¼á�ì+ë�Þ:ßÅÝ�ì�ÛrÝ§à�íZÝ�à'çËã�á�ì>ÝK � È�K × Ë%Mµå'ã�ì>Ý ó ì>áÛ�Üiö'ì�â½ß	���5ç óËó à'Ý�ì5�/Ë�uxO � & 4.O × wauæô � ÈRô × w<�H�ZÙ¼ì�×�å:Þ5ßCé%ì<r¼×ËÜiÛ�Ü½à»×RÝb}Ú�×¼ëoz5å

� Ë øhu�ÅÉÈ���wNË2K ��� K × �ô � �èô × úa`¦øt�  ú
ö u£øTu^Å È;��wNË:K � �ô � �èô × ú �

øhu�ÅÉÈ���wNË2K × �ô � �¢ô × ú!w�`�øb�  ú
ö u£øTu^Å È;��wNË:K � �ô � �èô × úa`�øb�  ú3w �

u£øTu^Å È;��wNË:K × �ô � �èô × úa`�øb�  ú3w
ö O � uæô � È�ô × w � O × uæô � È�ô × w

�¹àSØ Ý�ç óËó à'Ý�ì2�ÛË|O � u^ô � È�ô × w � O × u^ô � È�ô × w#�I�ZÙËì>×�å�Ú	�'Ú»Üi×LÚ óËó â½ß5Üi×��!éµìar¼×ËÜ��Û�Ü½à»×¼Ý;}?Ú»×¼ë�íËå
� Ë u£øTu^Å È;��wNË:K � �ô � �èô × úa`�øb�� ú3w �

u£øTu^Å È;��wNË:K × �ô � �èô × úa`�øb�� ú3w
ö u£øTu^Å È;��wNË:K � �ô � �èô × ú �

øhu�ÅÉÈ���wNË2K × �ô � �¢ô × ú!w�`�øb�� ú
ö øhu�ÅÉÈ���wNË2K � � K × �ô � �èô × úa`¦øt�� ú
ö uwO � & 4.O × w<uæô � È�ô × w
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A B
b

d c
a

2
b

d c
a2

(Ψ )Dominating Belief State(Ψ)Pedigreed Belief State

d b c a1 1

2 2

2

2

a b c d23 3

3

33

d ab c

S  = {1, 2}A

A

1

1

1

1

2

2

1,2

db ca

S  = {2, 3}B

B 2

2

2

23

3

3

3 3

a b
c d3 c

ab
d2 c b d a1

Sources:

1,2

Ø�Ü��»ç¼ã�ì;Ã\���ZÙ¼ìµë�Ü�¥7ç¼Ý�Ü½à»×¿à ó ì�ãrÚSÛ�à»ã(�ÍK � Ú»×¼ëiK � Ú»ã�ì�Û�ÙËìµÝ�ì�ÛrÝ�à�í"Ý�à»ç¼ã�á�ì>Ý�Û�ÙRÚSÛ�Ü½×¼ë�çRá�ìÛ�ÙËì ó ì>ë�Ü��»ã�ì�ì+ë�Þ7ì�â½Ü½ì�í�ÝUÛrÚSÛ�ì>Ýhí�à»ã¹Ú	�»ì>×'ÛrÝl$�Ú�×¼ë2" å�ã�ì>Ý ó ì>áÛ�Üiö'ì�â½ß	�
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Abstract

Ensemblelearning algorithmscombinethe re-
sultsof several classifiersto yield an aggregate
classification.Wepresentanormativeevaluation
of combinationmethods,applying and extend-
ing existing axiomatizationsfrom SocialChoice
theory and Statistics. For the caseof multiple
classes,we show thatseveralseeminglyinnocu-
ousanddesirablepropertiesare mutually satis-
fied only by a dictatorship. A weaker set of
propertiesadmitonly theweightedaveragecom-
bination rule. For the caseof binary classifi-
cation,we give axiomaticjustificationsfor ma-
jority vote and for weightedmajority. We also
show that,even whenall componentalgorithms
report that an attribute is probabilisticallyinde-
pendentof theclassification,commonensemble
algorithmsoftendestroy thisindependenceinfor-
mation. We exemplify thesetheoreticalresults
with experimentson stockmarket data,demon-
stratinghow ensemblesof classifierscanexhibit
canonicalvotingparadoxes.

1. Intr oduction

A recenttrendin machinelearningis to aggregatetheout-
puts of several learning algorithms togetherto produce
a compositeclassification(Dietterich, 1997). Under fa-
vorableconditions,ensembleclassifiersprovably outper-
form their constituentalgorithms,an advantageborn out
by muchempiricalvalidation. Yet theredoesnot seemto
beasingle,obviousway to combineclassifiers—many dif-
ferentmethodshave beenproposedandtested,with none
emerging as the clear winner. Most evaluation metrics

centeron generalizationaccuracy, eitherderiving theoreti-
cal bounds(Schapire,1990;Freund& Schapire,1999)or
(morecommonly)comparingexperimentalresults(Bauer
& Kohavi, 1999;Breiman,1996;Dietterich,in press;Fre-
und& Schapire,1996).

We take insteada normativeapproach,informedby results
from Social Choicetheory and statisticalbelief aggrega-
tion. First, we identify severalpropertiesthatanensemble
algorithmmight ideally possess,andthencharacterizethe
impliedform of thecombinationfunction.Section4 exam-
inesthecaseof morethantwo classes.Weshow that,under
a setof seeminglymild andreasonableconditions,no true
combinationmethodis possible.Theaggregateclassifica-
tion is alwaysidentical to that of only oneof the compo-
nentalgorithms. The analysismirrors Arrow’s celebrated
Impossibility Theorem,which shows that the only voting
mechanismthatobeysa similar setof propertiesis a dicta-
torship(Arrow, 1963).Underslightly weakerdemands,we
show thattheonly possibleform for thecombinationfunc-
tion is aweightedaverageof theconstituentclassifications.

Section5 considersthespecialcaseof binaryclassification.
Basedon May’s (1952)seminalwork, we presenta setof
axiomsthat necessitatethe useof simplemajority vote to
combineclassifiers.Wethenextendthis result,deriving an
axiomaticjustificationfor theweightedmajority vote.Ma-
jority andweightedmajority aretwo of themostcommon
methodsusedfor classifiercombination(Dietterich,1997).
Onecontribution of this paperis to provide formal justifi-
cationsfor them.

Section6 exploresthe independencepreservation proper-
ties of commonensemblelearningalgorithms. Suppose
that, with someattribute valuesmissing, all of the con-
stituentalgorithmsjudgeoneattributeto bestatisticallyin-
dependentof the classification.We demonstratethat this

Appendix  K
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independenceis generallylost after combination,render-
ing the aggregateclassificationstatisticallydependenton
theattributein question.

Section7 presentsempiricalevidenceof violationsof the
various axioms. We show that an ensembleof neural
networks—trainedto predictstockmarket data—cangen-
eratecounterintuitive results,reminiscentof so-calledvot-
ing paradoxesin the Social Choiceliterature. Section8
summarizesanddiscussesfuturework.

2. EnsembleLearning

We presenta very brief overview of ensemblelearning;
see(Dietterich,1997) for an excellentsurvey. Represen-
tative algorithmsincludebagging(Breiman,1996),boost-
ing (e.g.,ADABOOST (Freund& Schapire,1999)),anda
methodbasedon Error-CorrectingOutputCodes(ECOC)
(Dietterich& Bakiri, 1995). Ensemblealgorithmsgener-
ally proceedin two phases:(1) generateandtrain a setof
weaklearners,and(2) aggregatetheir classifications.

The first stepis to constructcomponentlearnersof suffi-
cient diversity (Hansen& Salamon,1990). Onecommon
techniqueis to subsamplethetrainingexamples,eitherran-
domly with replacement(Breiman,1996),by leaving out
randomsubsets(as in cross-validation),or by an induced
distributionmeantto magnifytheeffectof difficult training
examples(Freund& Schapire,1999). Another technique
baseseachlearner’s predictionson differentinput features
(Tumer& Ghosh,1996). Themethodof Error-Correcting
OutputCodes(ECOC)generatesclassifiersby having each
learnwhetheran examplefalls within a randomlychosen
subsetof theclasses.Anotherapproachinjectsrandomness
into the training algorithmsthemselves. Thesefour tech-
niquesapply to arbitrary classifieralgorithms—thereare
alsomany algorithm-specifictechniques.And, of course,it
is possibleto createanensembleby mixing andmatching
differenttechniquesfor differentclassifiers.

After generatingand training a set of weak learners,the
ensemblealgorithmcombinestheindividual learners’pre-
dictionsinto a compositeprediction. The choiceof com-
binationmethodis thefocusof this paper. Commonmeth-
odscanbe categorizedloosely into two categories: those
that combine votes, and those that can combine confi-
dencescores.Theformertypeincludesplurality vote1 and
weightedplurality; thelatterincludesstacking,serialcom-
bination,weightedaverage,andweightedgeometricaver-
age.

Baggingand ECOC are examplesof algorithmsthat use
plurality vote. Theensemble’s chosenclassis simply that

1This is the familiar “one person,onevote” procedurewhere
thecandidatereceiving themostvoteswins. We reserve majority
voteto referto thespecialcaseof two candidates.

which is predictedmost often by the individual learners.
Weighted plurality is a generalizationof plurality vote,
whereeachalgorithm’s vote is discounted(or magnified)
by a multiplicativeweight;classesarethenrankedaccord-
ing to thesumof theweightedvotesthey receive. Weights
canbechosento correspondwith theobservedaccuracy of
theindividualclassifiers,usingBayesiantechniques,or us-
ing gatingnetworks(Jordan& Jacobs,1994),amongother
methods.TheADABOOST algorithmcomputesweightsin
anattemptto minimizetheerrorof thefinal classification.

Stacking turnstheproblemof finding a goodcombination
function into a learning problem itself (Breiman, 1996;
Lee & Srihari, 1995; Wolpert, 1992): The constituental-
gorithms’ outputsare fed to a meta learner’s inputs; the
metalearner’s output is taken as the ensembleclassifica-
tion. Serial combinationusesonelearner’s top

�
choices

to reducethe spaceof candidateclasses,passingthe sim-
plified problemontothenext learner, etc. (Madhvanath&
Govindaraju,1995).Weightedalgebraic (or geometric)av-
eragecomputestheaggregateconfidencein eachclassasa
weightedalgebraic(or geometric)averageof theindividual
confidencesin that class(Jacobs,1995; Tax et al., 1997).
Somevariantsof boostingemploy weightedaveragecom-
bination(Druckeret al., 1993).

3. Notation

Let �������	��
����
�������
������ denotea vectorof � attribute
variableswith domain����������������� �!� . Denoteacor-
respondingvectorof values(i.e., instantiatedvariables)as" �#��$ � 
%$  
�������
%$ � ��&�� . Eachvector " is categorized
into oneof ' classes, ( � 
%(  
�������
%(*) . Thereare + clas-
sifiers, or learners,whichattemptto learnafunctionalmap-
ping from instantiatedattributesto classes.Differenttypes
of classifiersreturn different amountsof information—
somereturn a single vote for one predictedclass,others
returna rankingof theclasses,andstill othersreturnconfi-
dencescoresfor all classes.2 Our contentionis thatconfi-
denceinformation is usuallyavailable,whetherexplicitly
(e.g., from neuralnet activation values,or Bayesiannet
or decisiontree likelihoods)or implicitly from observed
performanceon the trainingdata. Thuswe denotelearner,
’s classificationasan assignment�.-�/0��
������1
2-3/ ) � of con-

fidencescoresto theclasses,where -3/54�&76 . Eachclassi-
fier is a function 8 /:9 �<;=6 ) . Whenconfidencemag-
nitudeinformationis truly unavailable,we adoptLee and
Srihari’s (1995) conventionsfor encodingclassifications:
A singlevotefor class( 4 is representedasa classification
vectorwith a 1 in the > th positionandzeroselsewhere;a
rank list of the classesis representedasa vectorwith a ?

2Thesethreeoutputconditionscorrespondto LeeandSrihari’s
(1995)definitionsof TypeI, TypeII, andTypeIII classifiers,re-
spectively.
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in thetop classposition, ?�@A?CB1' in thesecondplacepo-
sition, ?�@EDFB1' in thethird placeposition,etc. Note that,
technically, thesetwo encodingsintroduceunfoundedcom-
parative information. For example,a vote for ( 4 conveys
only that all otherclassesare lesspreferredthan ( 4 , but
areotherwiseincomparableamongthemselves.Variantsof
thelimitativetheoremsin thispaperarealsopossibleusing
morefaithful representationsof votesandrankings.

An ensemblecombinationfunction G acceptsan + -tupleof
classificationsandreturnsa compositeclassification;that

is, G 9IH ;J6 ) , where HLKNM 6 )PORQ . Thus,assumingH � M 6 ) ORQ , theaggregateclassificationof arbitraryclas-
sifiers 8 � 
�������
28 Q on aninput " is G M 8 ��M " O 
�������
28 Q M " ORO .
For a given input vector " &S� , we find it convenientto
define T asthe +U�V' matrix of all learners’confidence
scoresfor all classes.That is, - /W4 is learner

,
’s confidence

that " is in class> . Let X / be an + -dimensionalrow vec-
tor with a 1 in the

,
th positionandzeroselsewhere;simi-

larly, let Y 4 be an ' -dimensionalcolumnvectorwith a 1
in the > th positionandzeroselsewhere. Then X / T is the,
th row of T , and TZY[4 is the > th column of T . In other

words, XC/\T]�^8C/ M " O is learner
,
’s classification,and TZY[4

is thevectorof all confidencescoresfor class> . NotethatXC/\T�YC4E�_-3/54 . We denotethe ensembleclassificationbyT�`P�^�a-b`c��
%-3`%d
������1
%-3` ) �e�fG M T O . We write gihkj to
indicatethatevery componentof g is strictly greaterthan
thecorrespondingcomponentof j .

4. Multiple Classes

In this section,we proposea normativebasisfor ensemble
learningwhen ' l�m . Our treatmentis similar in spirit
to Pennock,Horvitz andGiles’s (2000)analysisof theax-
iomaticfoundationsof collaborativefiltering.

4.1 An Impossibility Theorem

Wepresentfivepropertiesadoptedfrom SocialChoicethe-
ory, arguetheir meritsin thecontext of ensemblelearning,
anddescribewhichexistingalgorithmsexhibit whichprop-
erties. Eachpropertyplacesa constrainton the allowable
form of G .
Property 1 (Universaldomain (UNIV)) H � M 6 ) O Q .

UNIV requiresthat G be definedfor any combinationof
classificationvectors.Sinceanarbitraryclassifiermayre-
turn an arbitrary classification,it seemsonly reasonable
that G shouldreturnsomeresult in all circumstances.All
existingensemblecombinationmethods,to ourknowledge,
aredefinedfor all possibleclassifieroutputpatterns.

Property 2 (Non-dictatorship (ND)) There is no dictator,
such that, for all classificationmatricesT andall classes> and

�
, - /W4 hn- /0o:p - `R4 hn- `2o .

In words, G is not permittedto completelyignore all but
oneof theclassifiers,irrespectiveof T . Weconsiderthede-
sirability of this axiom to be self-evident,sincethe whole
point of ensemblelearningis to improve uponthe perfor-
manceof theindividualclassifiers.

Property 3 (Weak Pareto principle (WP)) For all
classes> and

�
, TZY 4 hnTZY o:p - `q4 hn- `2o .

WP capturesthe natural ideal that, if all classifiersare
strictly moreconfidentaboutoneclassthananother, then
this relationshipshouldbe reflectedin the ensembleclas-
sification. Essentiallyall voting schemes(e.g., plurality,
pairwisemajority, Bordacount)satisfyWP. Weightedplu-
rality andweightedaveragingmethodsobey WP whenall
weightsarenonnegative (andat leastone is positive). If
a particularclassifier’s predictionsare badenough,some
combinationfunctions(e.g.,weightedaveragewith nega-
tive weights,or stacking)mayestablisha negative depen-
dencebetweenthat classifier’s opinion and the ensemble
result,andthusviolateWP. However, researcherstypically
strive to generateensemblesof algorithmsthatareasaccu-
rateaspossiblefor agivenamountof diversity(Dietterich,
1997;Dietterich,in press).

Property 4 (Independence of irr elevant alter-
natives (IIA)) Consider two classification matri-
ces Tr
2TZs . If T�Y 4 �tT�suY 4 and TZY o �vT�s0Y o , then- s`q4 hn- s`2o	w - `R4 hx- `co .
Under IIA, the final relative rankingbetweentwo classes
cannot dependon the confidencescoresfor any other
classes.For example,supposethat,in classifyinga fruit as
eitheranapple,abanana,or apear, theensembleconcludes
that“apple” is mostlikely. Now imaginethatwe learnone
pieceof categoricalknowledge(andnothingelse):thefruit
is not a pear. Every classifierdiminishesits confidencein
“pear”, but leavesits relative confidencesbetween“apple”
and“banana”untouched.Intuitively, theensembleshould
notsuddenlyconcludethatthefruit is abanana;indeed,ad-
mitting suchareversalis contraryto mostformalreasoning
procedures,includingBayesianreasoning.Seeminglyun-
foundedreversalslike this are preciselywhat IIA guards
against. Weightedaveragingmethodsdo satisfy IIA, al-
thoughplurality vote, and most other voting techniques,
canviolate it. In Section7, we illustrate the paradoxical
resultsthancanoccurwhenIIA is not met.

Property 5 (Scaleinvariance (SI)) Considertwo classifi-
cation matrices Ty
cT�s . If XC/zTZs{�S|}/.XC/aT�~7�{/ for all

,
and

for any positiveconstants|�/ and any constants�{/ , then-rs`q4 hn-rs`2o w - `R4 hx- `co for all classes> and
�
.

Different classifiers(especiallythosebasedon different
learningalgorithms)may reportconfidencesusingdiffer-
ent scales—one,say, rangingfrom 0 to 1; anotherfrom
-100to 100.Evenif they sharea commonrange,oneclas-
sifier maytendto reportconfidencescoresin thehigh end
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of thescale,while anothertendsto usethelow end.SI re-
flectstheintuition thatall classifiers’scoresshouldbenor-
malizedto a commonscalebeforecombiningthem. One
naturalnormalizationis:X[/zT sb� XC/zT�@V���u� M XC/qT O���C� M X / T O @������ M X / T O � (1)

This transformsall confidencescoresto the � ��
�?1� range,fil-
teringoutany dependenceonmultiplicative( | / ) oradditive
( � / ) scalefactors.3 LeeandSriharijustify asimilarnormal-
izationsimply because“eachoutput[classification]vector
is definedover a differentspace”(1995,p.42). Ensemble
combinationschemesbasedon votesor rankingsare by
definition invariantto scale;weightedaveragingmethods,
on theotherhand,arenot.

Different researchersfavor differing subsetsof thesefive
properties,at leastimplicitly via their choiceof combina-
tion methods.Roberts(1980)provesthat no combination
algorithmwhatsoevercan“have it all”.

Proposition1 (Impossibility) If '=hAD , no function G si-
multaneouslysatisfiesUNIV, ND, WP, IIA, andSI.

Proof: Follows from Sen’s (1986) or Roberts’s (1980,
Theorem3) extensionsof Arrow’s(1963)originaltheorem.

4.2 WeightedAverageCombination

We might weaken SI, allowing the final classificationto
dependon the magnitudesof confidencedifferences,but
not on additivescaleshifts.

Property 6 (Translation invariance (TI)) Considertwo
classificationmatricesTr
2TZs . If X / T�s{�S|}X / T�~7� / for all

,
andfor any(single)positiveconstant| andanyconstants��/ , then -rs`q4 hn-rs`2o w -b`R4�hx-b`co for all classes> and

�
.

TI canbeenforcedby anadditive normalization,or align-
ing all classifiers’scoreswith a commonreferencepoint
(e.g., X / T�s � X / TP@������ M X / T O ).
This weakeningis sufficient to allow for a non-dictatorial
combinationfunction G . Moreover, the only such G com-
putestheensembleconfidencein eachclassasa weighted
averageof the componentlearners’ confidencesin that
class.

Proposition2 (Weighted Average) If '�hnD , then the
only function G satisfying UNIV, WP, IIA, and TI is
such that j�TZY 4 h j�TZY o�p - `q4 h - `2o , wherej������ � 
R�  
������1
R� Q � is a row vectorof + nonnegative
weights,at leastoneof which is positive. If G is alsocon-
tinuous,then j�TZY 4 h�j�TZY o w - `R4 hn- `co .

3If �:���������a �¡�¢£��¤¦¥§�����z {¡ thenset ���a §¨ to © .

Proof: Follows from Roberts’s (1980)Theorem2.

Certainly there may exist classificationdomainswhere
someof thesepropertiesdo not seemappropriateor jus-
tified. However, webelieve that,becausethepropertiesare
very natural,understandingthe limitations that they place
on thespaceof ensemblelearningalgorithmshelpsto clar-
ify whatpotentialalgorithmscanandcannotdo.

5. Binary Classification

Now considerthesubsetof learningproblemswhere 'ª�« ( « �¬D . In this case,the impossibilityoutlinedin Propo-
sition 1 disappears;thefive propertiesUNIV, WP, IIA, SI,
andND arein factperfectlycompatible.For example,all
fivearesatisfiedby thestandardmajority vote: - `c� @®- `2 °¯f±±±±± Q² /u³}�  - /�� @®- /� ´±±±±± (2)

where 1µ� � ¶· ¸ ? 9 if
µ hn�� 9 if
µ �S�@�? 9 if
µ�¹ � �

Notethatthepropertiesarenecessarybut not sufficient for
characterizingmajority vote.Proposition3 below provides
onesufficientcharacterization.

5.1 Majority Vote

The use of majority vote for ensemblelearning is typi-
cally motivatedby its simplicity, its observedeffectiveness,
andits perceivedfairnesswhenthe constituentalgorithms
areessentially“createdequal” (Dietterich,1997). For ex-
ample,the componentalgorithmsemployed for bagging,
ECOC,andrandomizationaregenerallya priori indistin-
guishable,and(2) is typically usedto combineclassifica-
tionsin thesecases.

May (1952)providesan axiomaticjustificationfor major-
ity vote.His treatmentis directly applicablewhenthecon-
stituentalgorithmsreturnonly votes(equivalentto rankings
since '=�ºD ), ratherthanarbitraryconfidencescores.We
now generalizehisaxiomsandhischaracterizationtheorem
to applyto confidencescores.

Property 7 (Neutrality (NTRL))

If G M �a- �%� 
2- �q �c
�������
��a- Q � 
%- Q  � O �i�.- `1� 
%- `2 �
then G M �a- �R 
2- ��� �c
�������
��a- Q  
%- Q � � O �i�.- `2 
%- `1� �1�

Under NTRL, the effect of every algorithm reversingits
vote is simply to reversetheaggregatevote. NTRL estab-
lishesa symmetrybetweenthe two classnames,( � and(  , ruling outany a priori biasfor oneclassnameover the
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other. Indeed,the subscripts1 and2 are assignedto the
two classesarbitrarily; NTRL simply ensuresthatthefinal
resultdoesnotdependonhow thetwo classesareindexed.
NTRL is astrictly strongerconstraintthanIIA.

Property 8 (Symmetry (SYM))G M �a- �%� 
2- �q �c
�������
��a- Q � 
%- Q  � O� G M �.-3/�»��C
%-3/�»R��c
�������
��a-3/0¼I�C
%-3/0¼��� O
where ½ , � 
 ,  
�������
 , Q:¾ is any permutation of½�?d
2D´
������c
%+ ¾ .
SYM is strongerthanND andis sometimesreferredto as
anonymity. WhereasNTRL implies an invarianceunder
classnamereversal,SYM enforcesaninvarianceunderany
permutationof algorithmnames,or subscripts.It simply
insiststhatournumberingschemehasnoeffecton theout-
put of the combinationrule. Note that SYM doesnot, by
itself, rule out a posteriorbiasbasedon theclassifiers’re-
portedconfidencescores.

Property 9 (Positive Responsiveness(POSR)) Consider
two classificationmatricesTr
2TZs . If

 - `1� @®- `%  &�½¿��
�? ¾ ,
and X / T s �nX / T for all

,�À��Á , and X�ÂÃT s is such thateither

1. -ysÂ � hn- Â � and -ysÂ  �S- Â  , or

2. -ysÂ � �S- Â � and -ysÂ  ¹ - Â  ,
then

 -ys`c� @®-ys`2  �º? .
If the currentaggregatevote is tied (

 - `c� @S- `2  �#� ),
then,underPOSR,any changeby any algorithm

,
in apos-

itive directionfor ( � (i.e., -�Â � increasesor -�Â  decreases)
breaksthis deadlock,yielding - `1� h¬- `% . Moreover, any
changeof oneof theconstituentvotesthatstrictly favors ( �
cannotswing the ensemblevote in the oppositedirection,
from ( � to undecidedor to (  . Combinedwith NTRL,
POSRis a strongerversionof WP, but is still quite rea-
sonable.Note that, becausethereareonly two classes,if
any learner’svotesareobservedto benegatively correlated
with thecorrectclassification(and,for example,aweighted
averagemethodassignsa negative weight), thenits votes
cansimply be reversed,renderingPOSR(anda nonnega-
tiveweight)appropriateagain.

Proposition3 (Majority Vote)Anaggregationfunction G
is the majority vote(2) if andonly if it satisfiesUNIV, SI,
NTRL,SYM,andPOSR.

Proof: Choosescalingparametersasin Equation1: | / �M « - /0� @A- /� « OcÄ � (or if - /0� �^- /u , set | / �_? ) and � / �@�| / ���u� M - /0� 
%- /u O . Let X / T�sb�A| / X / T�~7� / for all
,
. Then�.- s/�� 
2- s/u �Å� ¶· ¸ �q?F
��F� 9 if - /�� hn- /u���§
��F� 9 if - /�� �S- /u���§
�?¿� 9 if - /�� ¹ - /u �

Thatis, with only two classes,andtwo degreesof freedom
in choosingthe scalingconstants,SI effectively restricts
thedomainH of G to votes.May (1952)provesthatNTRL,
SYM, andPOSRarenecessaryandsufficientconditionsfor
majority votewheninputsarevotes.We referthereaderto
May’sarticlefor theremainderof theproof.

Notice that, when the componentalgorithmsreturn only
votes,andnootherinformationis available,SI is avacuous
requirement;in this setting,Proposition3 becomesa very
compellingnormativeargumentfor theuseof majorityvote
for classifiercombination.

5.2 WeightedMajority Vote

Whenthecomponentalgorithmsdoreturnmeaningfulcon-
fidencescores,SI mayseemoverly severe,asit essentially
stripsawaymagnitudeinformation.Confidencescoresmay
reflectmany sourcesof information—forexample,theacti-
vationlevelsof aneuralnetwork’soutputnodes,theposte-
rior probabilitiesof a Bayesiannetwork’soutputvariables,
or an algorithm’s observed performanceon the training
data(asis usedin Boosting). Regardlessof its origin we
interpret - /0� h�- /� asa predictionin favor of classone,- /� h^- /�� asa predictionin favor of classtwo, and the
magnitudeof thedifferencein confidencescores

« - /� @Æ- /0� «
astheweightof algorithm

,
’s conviction.

Thenwe definetheweightedmajority voteas - `1� @®- `% Ç¯ ±±±±± Q² /�³�� « - /�� @®- /� « �  - /�� @£- /�  ±±±±±� ±±±±± Q² /�³�� - /�� @®- /u ±±±±± � (3)

Property 10 (SeparableSymmetry (SSYM))G M �.-Z�%�C
2-Z�R��c
�������
��a- Q �[
2- Q �� O� G M �.-3/�»%�[
%-�4q»R��c
�������
��a-3/0¼I�C
%-{4q¼��� O
where ½ , � 
 ,  
�������
 , Q�¾ and ½c> � 
a>  
�������
z> QÆ¾ are any two
permutationsof ½�?d
%D�
������c
�+ ¾ .
SSYM is a strongerconstraintthanSYM. UnderSSYM,
the ensembleclassificationdependson the set of confi-
dencescoresfor classoneandthesetof confidencescores
for classtwo, but not on theidentity of thealgorithmsthat
returnthosescores.

Proposition4 (WeightedMajority Vote)Theonlyaggre-
gationfunction G thatsatisfiesUNIV, TI, NTRL,SSYM,and
POSRis theweightedmajority vote(3).

Proof: Under UNIV and NTRL, TÈ�ÇÉ implies that- `c� �J- `% . Thus, under POSR,if - Q � h�- Q  and
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-�/0���Ê-3/u£�#� for all
,VÀ�#+ , then -b`1�£hË-b`2 . Simi-

larly, becauseof NTRL, if - Q  hA- Q � and - /0� �S- /� �S�
for all

, À��+ , then - `2 hÌ- `1� . Given an arbitraryclas-
sificationmatrix T , we canmake the following invariance
transformations.We invoke TI andSSYM alternatelyand
repeatedlyasfollows:G M �R�.- ��� 
%- �R �1
��a- 2� 
%- � �c
��a-3Í � 
%-�Í  �c
������5� O �G M �R�.-}���Î@®-Z�R�
%�F�c
¿���§
%-3%*@£-�2���c
¿�.- Í �[
2- Í [�c
������ � O �G M �R���§
����c
��a-Z�%�Î@£-}�qd
%-3%*@£-�2���c
¿�.- Í �[
2- Í [�c
������ � O �G M �R���§
����c
��a-Z�%�r~E-�2�Ï@®-Z�R°@£-��d
��F�1
�.��
2- Í *@®- Í ���1
������5� O ������P�GPÐÎÑ��.��
%�F�c
¿���§
��F�1
��.��
����c
������c
FÑ Q² /u³}� - /�� @®- /� 
���ÒÆÒ*Ó
Thus if Ô / -3/��	@n-�/� is greaterthan(lessthan,equalto)
zero, then -b`1�Õ@�-b`2 is greaterthan(lessthan,equalto)
zero,preciselytheweightedmajority vote(3).

6. IndependencePreservation

Considerthe learners’predictionswhenasked to evaluate
an example "�Ö with somemissingvalues. Without loss
of generality, let � � 
%�  
������1
���× betheattributevariables
with missingvalues,and let ��×*Ø � 
�������
�� � be the vari-
ableswith known values. Let " Ö×*Ù �J��$ Ö×*Ø � 
������1
�$ Ö� �
denotethe vector of known values. If we definea prior
joint probability distribution ÚrÛ M " O over all possiblecom-
binationsof attribute values,then we can computeeach
learner’s inducedposteriordistribution over classifications
giventheknown values"�Ö× Ù :ÚrÛ /RM X / T « " Ö×*Ù O � ²ÜÃÝ�Þ�ß »¿à�á5á5á�à ßIâÅã2äåRæ M ÜÃç è[éâ Ù O ³3ê æ�ëÚrÛ M�ì

« " Ö×*Ù O �
Similarly, we cancomputetheensemble’s posteriordistri-
butionoverclassifications:ÚÅÛ `FM T ` « " Ö× Ù O � ²ÜÃÝ�Þ�ß » àbá5á5á�à ß â ã2äí M å » M ÜÃç èCéâ Ù O ç5î5î5î ç å ¼ M ÜÃç è[éâ Ù O�O ³ ëdïÚÅÛ M�ì « " Ö× Ù O �
Now we canascertainwhethersomeattributesarestatisti-
cally independentof theclassification.Again without loss
of generality, selectattribute �ð×*Ø � for this purpose.What
if everyconstituentalgorithmagreesthat ��×ÎØ � is indepen-
dentof theclassification,giventheremainingknownvalues$ Ö×*Ø  
�������
%$ Ö� ? It seemsnaturalanddesirablethat sucha
unanimousjudgmentof “irrelevance”shouldbepreserved
in the ensembledistribution. The following propertyfor-
mally capturesthis ideal:

� � �  �ðÍ X � T X  T XCÍ[T T `
0 0 0 �q?F
��F� ����
�?¿� �R?d
%�F� �R?d
����
0 1 0 ���§
�?¿� �q?d
%�F� �.��
�?¿� �.��
�?[�
1 0 0 �q?F
��F� ����
�?¿� �.��
�?¿� �.��
�?[�
1 1 0 �q?F
��F� �q?d
%�F� �R?d
%�F� �R?d
����ÚrÛ /RM �R?d
%�F� « �ðÍ	�A� O 0.75 0.5 0.5 0.5� � �  �ðÍ X � T X  T XCÍ[T T `
0 0 1 ���§
�?¿� ����
�?¿� �R?d
%�F� �.��
�?[�
0 1 1 �q?F
��F� ����
�?¿� �R?d
%�F� �R?d
����
1 0 1 �q?F
��F� �q?d
%�F� �.��
�?¿� �R?d
����
1 1 1 �q?F
��F� �q?d
%�F� �.��
�?¿� �R?d
����ÚrÛ /RM �R?d
%�F� « �ðÍ	�ñ? O 0.75 0.5 0.5 0.75

Table1. Examplewhereplurality voteviolatesIPP.

Property 11 (Independence Preservation Property
(IPP))

If ÚrÛ /RM X / T « "{Ö×°Ù O �SÚrÛ /�M X / T « $ Ö×*Ø  
�������
%$ Ö� O for all
,

then ÚÅÛ `ÃM T ` « " Ö× Ù O ��ÚrÛ `FM T ` « $ Ö×*Ø  
�������
�$ Ö� O �
Table 1 presentsa constructive proof that plurality vote
fails to satisfy IPP. Three attributes eachhave domain��/���½¿�§
�? ¾ , andthe prior distribution over attribute val-
ues ÚÅÛ M " O �Ê?CBCò is uniform. Variables�	� and �ð have
missingvalues(i.e., óô�UD ). Eachof threeconstituent
algorithmsagreethat the classificationis independentof� Í . But combinationby plurality vote destroys this in-
dependence:Accordingto theensemble,theclassification
doesin factdependon the valueof ��Í . Similar examples
demonstratethatalgebraicandgeometricaveragesalsovi-
olate IPP. It remainsan openquestionwhetherany rea-
sonableensemblecombinationfunction can satisfy IPP.
Resultsfrom Statisticsconcerninggeneralizedvariantsof
IPParemostlynegative: No acceptableaggregationfunc-
tion hasbeenfoundthatpreservesindependence(Genest&
Zidek, 1986),andseveral impossibility theoremsseverely
restrict the spaceof potentialcandidates(Genest& Wag-
ner, 1987;Pennock& Wellman,1999).

7. Experimental Observations

Wehaveshown, in theory, thattheclassof potentialensem-
ble algorithmsis severelylimited if we wanta smallnum-
ber of intuitive propertiessatisfied.Onemight arguethat
situationswherethesepropertiescomeinto conflict may
neverarisein practiceif we usepopularaggregationmeth-
ods.Thepurposeof thissectionis to show by examplethat,
in fact,suchconflictsdooccurin practice.Specifically, we
will give examplesfrom a stockmarket predictiondomain
whereIIA breaksdown if we baseour aggregationon vot-
ing.
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rankorder # rankorder #

UP h SAME h DOWN 6 DOWN h SAME h UP 5
UP h DOWN h SAME 1 SAME h UP h DOWN 5
DOWN h UP h SAME 3 SAME h DOWN h UP 1

Table2. Six learnedvotepatterns,andthenumberof neuralnet-
worksthatlearnedeach.An instanceof theBordaparadox.

To this end, we report results of empirical tests of an
ensemblelearnertrained on stock market data. We re-
trieved daily closing pricesof the Dow between1/20/97
and 1/18/00from MSN Investor.4 From this, we gener-
atedan approximatelyzero-meanand unit-variancetime
seriesof the form ½[õdö��^òF÷ M�ø ��ù{ö°@ ø �yù{ö Ä � O ¾ , where ù{ö
is the Dow’s price on day ú . The attributes are � ��.õdö Äbû 
%õdö Ä�ü 
�������
�õFö Ä ��� . The classesarediscreteintervals
of õFö suchthat (°��� UP

¯ M õFöÆhk��� mF÷ O , (Î�� DOWN
¯M õdö ¹ @���� mF÷ O , and ( Í � SAME

¯ M @���� mF÷ ýñõdö�ýt�§� m�÷ O .
Theintervalsaresuchthateachclassfrequency is roughly?CBCm . Thecomponentlearningalgorithmsarebackpropaga-
tion neuralnetworks built usingFlake’s (1999) NODELIB

codelibrary; eachconsistsof an input layerof five nodes,
a hiddenlayer of from oneto seven nodes,andan output
layer of threenodes. Diversity is dueonly to differences
in thenumberof hiddennodesandto randomizationin the
training algorithm. The time seriesõ ö wasdivided into a
trainingsetof 562daysanda testsetof 187days.

Table 2 shows the learnedclassrankingsfor twenty one
networks(threeeachwith ?d
2D´
������c
cþ hiddennodes)on test
day7/14/99. If we usestandardplurality vote to combine
predictions,then DOWN wins with 8 votes,UP placesin
secondwith 7 votes,andSAME comesin lastwith 6 votes.
By this measurewe shouldshort the Dow. But are we
sure?SinceSAME is presumablythe leastlikely outcome,
let’s focuson therelative likelihoodsbetweenonly DOWN

and UP.5 If we ignoreSAME andrecomputethe vote,we
find that UP actuallybeatsDOWN by 12:9! This is a vivid
demonstrationthat plurality vote violatesIIA; the prefer-
encebetweenUP andDOWN dependson SAME. Soshould
we invest in the Dow? Well, the other two pairwisema-
jority votesrevealthat SAME beatsUP by 11:10andSAME

beatsDOWN by 12:9. Thenaccordingto thepairwisema-
jority, SAME wins againstbothotherclasses,UP comesin
second,andDOWN is last,completelyreversingtheoriginal
orderpredictedby thethree-way plurality vote. This is an
illustration of the so-calledBorda voting paradox, named
aftertheeighteenthcenturyscientistwho discoveredit.

Table3 demonstratesanotherclassicvoting paradox,due
to Condorcet,oneof Borda’s peers.Thetablelists theac-

4http://moneycentral.msn.com/investor
5Or we mayhave receivedoutsideinformationthatdiscounts

thelikelihoodof SAME.

, - /�� - /� - / Í rankorder

1 -0.33 -0.41 -0.25 SAME h UP h DOWN

2 -0.45 -0.25 -0.27 DOWN h SAME h UP

3 -0.31 -0.35 -0.37 UP h DOWN h SAME

Table3. Confidencescoresand correspondingvote patternsfor
threeneuralnetworks.An instanceof theCondorcetparadox.

tivationvalues(confidencescores)of threenetworks(with
one,two, andthreehiddennodes)on testday4/23/99.Plu-
rality vote is tied, sinceeachalgorithm ranksa different
classhighest.Whataboutpairwisemajority vote? In this
case,SAME beatsUP by 2:1,andUP beatsDOWN by 2:1. So
is SAME our predictedoutcome?Not necessarily—DOWN

beatsSAME, alsoby2:1. Weseethatpairwisemajorityvote
canreturncyclical predictions,a violation of our generic
definition of a classification6 ) , which assumesthat ag-
gregationreturnsa transitiveorderingof classes.

Thesetwo “paradoxes” illustrate the undesirableconse-
quencesof violating someof the basicpropertiesof G de-
fined earlier. The examplesalso constitutean existence
proof thatsomeof thesamecounterintuitiveoutcomesthat
have perplexed social scientistsfor centuriescan and do
occurin thecontext of ensemblelearning.

8. Conclusion

We identifiedseveral propertiesof combinationfunctions
that Social Choice theoristsand statisticianshave found
compelling,andarguedtheir applicabilityin thecontext of
ensemblelearning.Wecatalogedcommonensemblemeth-
odsaccordingto thepropertiesthey do anddo not satisfy,
andshowedthatnocombinationfunctioncanpossessthem
all. We providedaxiomaticjustificationsfor weightedav-
eragecombination,majority vote, andweightedmajority
vote.We describedhow commonaggregationmethodsfail
to respectunanimousjudgmentsof independence.Finally,
we exemplifiedthefundamentalandunavoidabletradeoffs
amongthe variouspropertiesusing an ensemblelearner
trainedon stockmarketdata.

Drucker, et al. (1993) presentempirical evidence that
weightedaverageoutperformsplurality vote in somecir-
cumstances.Future work will examinewhetherthe ax-
iomatic framework developedin this papercanaid in de-
riving theoreticalboundson the performanceof weighted
averageandothercombinationrules. We alsoplan to ex-
plorenormativejustificationsfor individualclassifiers,and
investigatewhether, in somecases,a complex individual
classifiermight reasonablybe interpretedasan ensemble
of simplerconstituentclassifiers.
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Abstract

We considerthe task of aggregating beliefs of sev-
eral experts. We assumethat thesebeliefs are rep-
resentedas probability distributions. We argue that
the evaluationof any aggregation techniquedepends
on the semanticcontext of this task. We proposea
framework, in which we assumethatnaturegenerates
samplesfrom a‘true’ distributionanddifferentexperts
form theirbeliefsbasedon thesubsetsof thedatathey
have a chanceto observe. Naturally, the optimal ag-
gregatedistributionwouldbetheonelearnedfrom the
combinedsamplesets.Sucha formulationleadsto a
naturalwayto measuretheaccuracy of theaggregation
mechanism.

We show that the well-known aggregation operator
LinOP is ideally suited for that task. We propose
a LinOP-basedlearning algorithm, inspired by the
techniquesdeveloped for Bayesianlearning, which
aggregates the experts’ distributions representedas
Bayesiannetworks. We show experimentallythat this
algorithmperformswell in practice.

1 Intr oduction

Belief aggregation of subjective probability distributions
hasbeena subjectof greatinterestin statistics(see[GZ86,
CW99]) and, more recently, artificial intelligence (e.g.,
[PW99]) andmachinelearning(ensemblelearningin par-
ticular [PMGH00]), especiallysinceprobabilisticdistribu-
tions are increasinglybeing usedin medicineand other
fields to encodeknowledge of experts. Unfortunately,
many of the aggregationproposalshave lacked sufficient
semanticalunderpinnings,typically evaluating a mecha-
nism by how well it satisfiespropertiesjustified by little
morethanintuition. However, ashasbeennotedin other
fieldssuchasbelief revision (cf. [FH96]), theappropriate-
nessof propertiesdependson theparticularcontext.

We take a moresemanticapproachto aggregation:we first
describethe realistic framework in which the expertsor
sourceslearn their probability distributionsfrom dataus-
ing standardprobabilisticlearningtechniques.We assume

aDecisionMaker (DM) — thetraditionalnamefor theag-
gregator— wantsto aggregatea setof theselearneddis-
tributions. This framework suggestsa naturaloptimalag-
gregationmechanism:constructthedistributionthatwould
be learnedhadall the sources’datasetsbeenavailableto
theDM. Sincetheoriginaldatasetsaregenerallynotavail-
able,the aggregationmechanismshouldcomeascloseas
possibleto reconstructingthe datasetsandlearningfrom
thecombinedset.

For intuition, considerthe the task of creatingan expert
systemfor somespecializedmedicalfield. We would like
to take advantageof theexpertiseof severaldoctorswork-
ing in this field. Each of thesedoctors sharpenedhis
knowledgeby following many patients. The doctorscan
no longer recall the specificsof eachcase,but they have
formed over the yearsfairly accuratemodelsof the do-
main that canbe representedassetsof conditionalprob-
abilities. (In fact,many expert systemshave beencreated
over the yearsby eliciting suchconditionalprobabilities
from experts[HHN92].) Of course,if therewasa doctor
who hadseenall of thepatientstheothersdoctorssaw, the
idealexpertsystemwould resultfrom eliciting hermodel.
However, thereisn’t onesuchexpert. Therefore,our sys-
temwould benefitfrom incorporatingtheknowledgeof as
many expertsaswe canfind. The systemwould alsoac-
countfor thedifferinglevelsof experienceof differentdoc-
tors – someof themmay have practicedfor muchlonger
thanothers.

One of the best-known aggregationoperatorsis the Lin-
earOpinionPool(LinOP) which aggregatesa setof distri-
butionsby taking their weightedsum. It hasbeenshown
in the statisticscommunitythat, undersomeintuitive as-
sumptions,learning the joint distribution from the com-
bineddatasetis equivalentto usingLinOPovertheindivid-
ual joint distributionslearnedfrom theindividualdatasets.
However, whereasthe weights in typical usesof LinOP
areoften criticized for beingad-hoc,our framework pre-
scribessemantically-justifiedweights: the estimatedper-
centagesof the dataeachsourcesaw. Intuitively, a high
weight meanswe believe a sourcehas seena relatively
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176



largeamountof dataandis, hence,likely to bereliable.

However, joint distributionsarehardly the preferredrep-
resentationfor probabilisticbeliefsin real-world domains.
BNs (akabelief networks,etc.) [Pea88] have gainedmuch
popularityasstructuredrepresentationsof probabilitydis-
tributions.They allow suchdistributionsto berepresented
muchmorecompactly, thereforeoften avoiding exponen-
tial blowup in bothmemorysizeandinferencecomplexity.

Thus,we assumethesourcesbeliefsareBNs learnedfrom
data.Accordingto oursemantics,theaggregateBN should
beonetheDM would learnfrom thecombinedsetsof data.
We describea LinOP-basedBN aggregationalgorithm,in-
spiredby the algorithmdesignedto learnBNs from data.
The algorithmusessources’distributions insteadof sam-
ples to searchover possibleBN structuresandparameter
settings. It takes advantageof the marginalizationprop-
erty of LinOPto makecomputationmoreefficient. We ex-
plore the algorithm’s behavior by runningexperimentson
thewell-known, real-lifeAlarm network [BSCC89]andon
thesmallerartificial Asianetwork [LS88].

2 Formal Preliminaries

Werestrictourattentionto domainswith discretevariables.
We considerhow to computethe aggregatedistribution,
andhow theaccuracy of our computationdependson how
muchwe know aboutthesources.

Formally, we considerthe following setting: Thereare
�

sourcesand � discreterandomvariables,whereeachvari-
able � hasdomain �����	��
� . We follow theconventionof
usingcapital lettersto denotevariablesandlowercaselet-
tersto denotetheirvalues.Symbolsin bolddenotesets.�
is thesetof possibleworldsdefinedby valueassignments
to variables.Thetruedistribution or modelof theworld is� . Eachsource� hasadataset ��� sampledfrom (unknown
to us) � . We will assumethateach��� is finite of size ��� .
The correspondingempirical (i.e., frequency) distribution
is �� � . Eachsource� learnsa distribution � � over � . This
is � ’s modelof theworld. Thecombinedsetof samplesis����� � � � of size � . Thecorrespondingempiricaldistri-
bution is �� . TheDM constructsanaggregatedistribution � .
The optimal aggregatedistribution ��� is positedto be the
distribution theDM would learnfrom � .

Sinceit is unrealisticto expecttheDM to haveaccessto the
sources’samplesets,we considerhow to useinformation
aboutthesources’learneddistributionsto at leastapprox-
imate ��� . Specifically, we considerthesituationwherethe
DM knows the sources’distributionsandhasa goodesti-
mateof thepercentage� � �!���#"$� of thecombinedsetof
sampleseachsource� hasobservedaswell aswhat learn-
ing methodit used.

We make a numberof assumptions.First, we assumethat
thesamplesarenot noisyor otherwisecorrupted,andthey

arecomplete(no missingvalues).

Second,we assumethat theindividual samplesetsaredis-
joint (so �%�!& � ��� ). This impliesthattheconcatenation
of the ��� equals� , sowe don’t have to concernourselves
with repeatswhenaggregating. This assumptionis not al-
waysappropriate.It is invalidatedwhenmultiple sources
observethesameevent.However, thereareinterestingdo-
mainswherethis propertyholds. For example,in our mo-
tivating medicaldomain,doctorsare likely to have seen
disjoint setsof patients.

Third, we assumethat thesourcesbelieve their samplesto
beIID — independentandidenticallydistributed.Thema-
chinelearningalgorithmsusedin practicecommonlyrely
on thisassumption.

Finally, we assumethatthesamplesin thecombinedset �
aresampledfrom � andIID. This assumptionmayappear
overly restrictive at first glance. For one, it may seemto
precludethecommonsituationwheresourcesreceivesam-
plesfrom differentsubpopulations.For example,if doctors
arein differentpartsof theworld, thecharacteristicsof the
patientsthey seewill likely bedifferent.

In fact,wecanaccomodatethissituationwithin our frame-
work by assuming� is a distributionover thedomainvari-
ablesand a sourcevariable ' which takes the different
sourcesasvalues; '(�)� meanssource� observedthe in-
stantiateddomainvariables.This generalizeddistribution
is sampledIID. Each � � consistsof thesubsetof samples
where '*�+� . It is not necessaryto keeparoundthe ' val-
ues;computingthe � � and ��� without ' will give thesame
resultsaslearningdistributionsover thecompletesamples
andmarginalizing out ' . Thus,althoughsampleswill be
IID, differentsubpopulationdistributionswill bepossible,
capturedby differentconditionalprobability distributions
of thedomainvariablesgivendistinctvaluesof ' . ,
3 AggregatingLearnedJoint Distrib utions

We first considerthecasewheresourceshave learnedjoint
distributions,andtheaggregateis alsoa joint.

3.1 Learning joint distrib utions: review

Givensamplesof avariable� , thegoalof alearneris to es-
timatetheprobabilityof futureoccurencesof eachvalueof� . In oursetting,thedomainof � is � andtheparameters
that needto be learnedarethe - �.- probabilites.The dis-
tribution over � is parameterizedby / . Two standardap-
proachesareMaximumLikelihoodEstimation(MLE) and
MaximumA Posteriori estimation(MAP).0

Two implicationsof this formulationarethattheassumption
thatthe 132 aredisjoint is implicit and 4�2 will approach576�8�9;:=<
as > approaches? for all : .
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An MLE learnerchoosesthememberof a specifiedfamily
of distributionsthatmaximizesthelikelihoodof thedata:

Definition 1 If � is a random variable, �����	�@
A�B�CED ,GFEHEHIH$F D�JLK , and /M�)NPO ,QFEHIHEH$F OARQS where O�T�VUW�@XY�Z-/[� , thentheMLE distributionover � givendataset � is

\^]7_ ��
 F �[�`�baQcedf�Wa Dgih �=�j-lkm�
It is easyto show thattheMLE distribution is theempirical
distribution if samplesareIID.

MAP learning,on theotherhand,followstheBayesianap-
proachto learningwhich directsus to put a prior distribu-
tion over the valueof any parameterwe wish to estimate.
Wetreattheseparametersasrandomvariablesanddefinea
probabilitydistributionover them.More formally, we now
have a joint probability spacethat includesboth the data
andtheparameters.

Definition 2 If � is a random variable, �����	�@
A�B�CED , FEHEHIH$F D J K , and /M�)NPO , FEHIHEH$F O R S where O � �VUW�@X � -/[� , then the MAP distribution over � givendata set �
andprior UW�#/[� is thedistribution

\^n h �@
 F h �P/[� F �[�`o h ��
p-@�q�`� r h ��
p-=/[� h �P/!-@�q���Y/
Theappropriateconjugateprior for variableswith multino-
mial distributionsis Dirichlet. sutvcl�P/w-yx , FEHIHEHEF x J � , where
eachx � is a hyperparametersuchthat x �fz|{ .
Wewill assumethatDirichlet distributionsareassessedus-
ing the methodof equivalentsamples: given a prior dis-
tribution } over � and an estimatedsamplesize ~ , x � is
simply }��@X � ��~ . We usetheseto parameterize

\^n h :

Definition 3 If � is a random variable, �����	�@
A�B�CED ,GFEHEHIH$F D�JLK , / ��N#O ,lFEHIHEH$F OARQS where O��� � �@XY��-/[� , } is a probability distribution over � , and~ z�{ , then
\^n h ��
 F N�} F ~�S F �[� denotesthe distribution\^n h �@
 F����LF �q� where � � ��sutvcy�#/�- }�� D , ��~ FEHIHEHIF }�� D J ��~�� .

We will omit the � argumentfrom theMLE andMAP no-
tationsinceit is understood.

3.2 LinOP: review

Let us turn to the problemof aggregation. We will show
that joint aggregationessentiallyreducesto LinOP. LinOP
was proposedby Stone in [Sto61], but is generallyat-
tributedto Laplace.It aggregatesasetof joint distributions
by takinga weightedsumof them:

Definition 4 Given probability distributions � ,GFEHIHEHEF �Y�
and non-negative parameters � , FEHIHEHEF � � such that& � � � ��� , the LinOP operator is definedsuch that, for

any �+�	� ,] tv��� h �@� ,lF���,lFIHEHEHIF �Y� F�� ���E�@�u�`���Y�|� � � � ���u� H
LinOP is popularin practicebecauseof its simplicity. As
describedin [GZ86], it also has a numberof attractive
propertiessuch as unanimity (if all the � � � ��� , then
LinOPreturns�Y� ), non-dictatorship(nooneinput is always
followed), and the marginalization property (aggregation
andmarginalizationarecommutativeoperators).However,
LinOPhasoftenbeendismissedin theaggregationcommu-
nitiesasanormativeaggregationmechanism,primarily be-
causeit failsto satisfyanumberof otherpropertiesdeemed
to benecessaryof any reasonableaggregator, e.g.,theex-
ternal Bayesianityproperty(aggregationandconditioning
shouldcommute)andthe preservationof sharedindepen-
dences.Furthermore,typical approachesto choosingthe
weightsareoftencriticizedasbeingad-hoc.

However, this dismissal may have been overly hasty.
LinOP provesto betheoperatorwe arelooking for in our
framework: usingit is equivalentto having the DM learn
from thecombineddatasetunderintuitiveassumptions.

3.3 MLE aggregation

SupposethesourcesandtheDM areMLE learners.As has
beenknown in statisticsfor sometime, theDM needonly
computetheLinOPof thesources’distributions.

Proposition1 ([Win68, Mor83]) If � � � \^]7_ ��� � � for
each ��� C � FEHIHEH�F � K and ��� � \^] _ ���q� , then ��� �] tv��� h �=� ,QF���,lFEHIHEHIF � � F�� ��� .
Althoughstraight-forward,thispropositionis illuminating.
For one,theweightcorrespondingto eachsourcehasavery
clearmeaning;it is thepercentageof totaldataseenby that
source.TheDM only needsto provide accurateestimates
of thesepercentages.A high weight indicatesthattheDM
believesasourcehasseenarelatively largeamountof data
andis, hence,likely to bevery reliable. Thus,we address
a commoncriticism of LinOP, that the weightsareoften
chosenin an ad-hocfashion. Also, if � is known, the
DM cancomputethe numberof samplesin � that were� : � ] t���� h ��� , F�� , FIHEHIHEF � � F�� � � . Thus,

] t���� h can be
viewedasessentiallystoringthesufficientstatisticsfor the
DM learningproblem.

It is now easyto seewhy a propertysuchaspreservation
of independencewill not alwayshold given our learning-
basedsemantics.In our framework, sourcesdo not have
strongbeliefsaboutindependences;any believedindepen-
dencedependson how well it fits the source’s data. The
independencepreservationpropertydoesnot take into ac-
countthepossibility that,becauseof limited data,sources
mayall have learnedindependenceswhicharenot justified
if all thedatawastakeninto account.
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Consider, for example,thefollowing distribution over two
variables� and � : � ���� $�A�¡�l"l¢ , � ���¤£ $�A�¡�l"Q¥ , � � £�� E�¦��l"Q§ , and � � £� £  $�¨�B�l"G¢ . Obviously, � and � arenot in-
dependent.Supposetwo sourceshave eachreceiveda set
of six samplesfrom this distribution: � , consistsof one
eachof �¤  and � £   , two eachof £��  and £� £   ; �[© consistsof
one eachof � £  and £� £  , two eachof ��  and £�¤  . Further
supposeeachusedMLE to learna distribution over � and� . � and � areindependentin eachof thesedistributions.
TheLinOPdistribution,ontheotherhand,effectively takes
into accounttheevidenceseenby bothsourcesandactually
computes� wherethevariablesarenot independent.

3.4 MAP aggregation

MLE learnersareknown to haveproblemswith overfitting
andlow-probability eventsfor which datanever material-
ized. MAP learningoftendoesa betterjob of dealingwith
theseproblems,especiallywhendatais sparse.

Consequently, supposethe sourcesandthe DM areMAP
learnerswith Dirichlet priors. The optimal aggregatedis-
tribution is a variationon

] t���� h : ©
Proposition2 Suppose, for each �ª� C � FEHIHEH$F � K , � �^�\^n h ��N�} � F ~ � S F � � � and ��� � \^n h ��N@} F ~�S F � � � . Then,

� � �@��`� ��¬«�~ �P� ] tv��� h �=� , F�� , FEHIHEH$F � � F�� � �7«�}����u��~��
« � �

~I��«�~ � � � �@��f®�} � �@�¦��� H (1)

Thefirst term in Equation1 is theDM’s MAP estimation,
the secondterm accountsfor the sources’priors by sub-
tractingout their effect.

Corollary 2.1 Suppose, for each ��� C � FEHIHEH�F � K , � � �\^n h ��N�} � F ~ � S F � � � and ��� � \^n h ��N@} F ~�S F � � � . Then,¯ t��°�±=²´³fµ°=¶�±=²·³TµE¸ ¶ � � � ] t���� h ��� ,GF���,lFIHEHIHEF � � F�� ��� H
Thus, as � becomeslarge, the LinOP distribution ap-
proaches��� . This is not surprisingsinceit is well-known
thatMLE learningandMAP learningwith Dirichlet priors
areasymptoticallyequivalent.Theimplicationis thatif �
is large,not only do we not needto know � to aggregate,
we do not needto know what priors the sourcesusedei-
ther. And if we approximatetheaggregatedistribution by
theLinOPdistribution,thisapproximationwill improvethe
moresamplesseenby thesources.

4 AggregatingLearnedBayesianNetworks

Bayesiannetworks(BNs) arestructuredrepresentationsof
probability distributions. A BN   consistsof a directed¹

We omit proofsfor lackof space.

acyclic graph(DAG) º whosenodesarethe � randomvari-
ables. The parentsof a node � are denotedby h a����p� ;� aY�@�p� denotesa particular assignmentto h a��@�p� . The
structureof thenetwork encodesmarginal andconditional
independenciespresentin thedistribution. Associatedwith
eachnodeis theconditionalprobabilitydistribution (CPD)
for � given h a����p� .
Weconsiderthecasewheresources’beliefsarerepresented
as BNs learnedfrom data. We briefly review the tech-
niquesusedfor learningBNs from data. For a morede-
tailedpresentation,see[Hec96].

4.1 Learning Bayesiannetworks: review

If the structureof the network is known, the taskreduces
to statisticalparameterestimationby MLE or MAP. In the
caseof completedata,thelikelihoodfunctionfor theentire
BN convenientlydecomposesaccordingto thestructureof
the network, so we can maximizethe likelihood of each
parameterindependently.

If thestructureof thenetwork is notknown,wehaveto ap-
ply Bayesianmodelselection.More precisely, we definea
discretevariable » whosestatesº correspondto possible
models,i.e., possiblenetwork structures;we encodeour
uncertaintyabout » with theprobabilitydistribution UW�@º�� .
For eachmodel º , we definea continuousvector-valued
variableO¦¼ , whoseinstantiationskl¼ correspondto thepos-
sibleparametersof themodel. We encodeour uncertainty
about O¦¼ with aprobabilitydistribution UW��kl¼½-yº�� .
We scorethecandidatemodelsby evaluatingthemarginal
likelihood of the data set � given the model º , that is,
the Bayesianscore UW���¾-¿º��	�ÁÀ½UW���¾-·k ¼ F º���UW��k ¼ -º���UW�Âº���Ãmk ¼ H
In practice, we often use some approximation to the
Bayesianscore. The mostcommonlyusedis the MDL
score,which convergesto the Bayesianscoreas the data
setbecomeslarge.TheMDL scoreis definedasÄ�Å ��ceÆIÇ´È � �@É �7Ê �[�¿�

� Ë� ��Ì , �ÍIÎEÏ�Ð ¶@Ñ ��Ò ¶ �� �@XY� F�� a��@X��#��� ¯ ��dW�� �@XY�Ó- � a���XY�����
® ¯ �md`�Ô sutv�	Õ d �×Ö ®;s ] �@d � �

wheresutv�^Õ d � Ö is thenumberof independentparametersin
thegraphand s ] ��d � � is thedescriptionlengthof º � . Find-
ing the network structurewith the highestscorehasbeen
shown to beNP-hardin general.Thus,wehaveto resortto
heuristicsearch. Sincethe searchcaneasilyget stuckin
a localmaximum,weoftenaddrandomrestartsto thepro-
cess.TheBN learningalgorithmis presentedin Figure1.

Why are we interestedin learningBNs rather than joint
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1. pick a random DAG g
2. parameterize g to form b
3. score b
4. loop
5. for each DAG g’ differing from g by

adding, removing, or reversing an edge
6. parameterize g’ to form b’
7. score b’
8. pick the b’ with the highest score and replace

g with g’ and b with b’ if score(b’) Ø score(b)
9. until no further change g
10. return b.

Figure1: Bayesiannetwork learningalgorithm.

distributions? Besidessomeobvious reasonsconcerning
compactrepresentationandefficient inference,a distribu-
tion learnedby theBN algorithmmaybecloserto theorig-
inal distributionusedto generatethedatain thefirst place.

First, note that the networks which canbe parameterized
to representexactly theMLE- or MAP-learnedjoint distri-
butionsare,in general,fully connected.Intuitively, a dis-
tribution learnedfrom finite sampledatawill alwaysbe a
little noisy, sotrueindependenceswill almostalwayslook
like slight dependencesmathematically. As a result, the
BNs we areinterestedin (eitherfor the sourcesor for the
DM) will not be exact representationsof the independen-
ciespresentin theMLE- orMAP-learneddistributions,but,
rather, will accountfor this overfitting.

BN learning ‘stretches’the distribution that bestfits the
data to match candidatenetwork structures. For every
structure,welook for thebest(producingthehighestscore)
parameterizationof that structure. Thescorebalancesthe
fit to thedatawith modelcomplexity.

4.2 LinOP-basedAggregationAlgorithm

Now supposeeachsourcehaslearnedaBN  �� with DAG º��
from �[� usingthe MDL scoreandthe DM is given these
BNs as well as the �Ù� . According to our semantics,the
aggregateBN shouldbeascloseaspossibleto theonethe
DM would learnfrom � .

We cannotapplytheBN learningalgorithmdirectly, since
we don’t have thedatausedby sourcesto learntheir mod-
els. A simplesolutionwould beto generatesamplesfrom
eachsourcemodelandtrain theDM on thecombinedset.
That algorithm,althoughappealinglysimple, raisessome
new questions.It is notclearhow many samplesweshould
generatefrom eachsource.Onepossibilitywouldbeto use
thesamenumberasthe(estimated)numberof samplesthat
eachsourceusedto learnits model.However, if thatnum-
ber is small, thesampleswill not representthe generating
distribution adequately, introducingadditionalnoiseto the
process.If wegeneratemoresamplesthaneachsourcesaw
(increasingit proportionallyto preservethe �Ù� settings),we
give too muchweightto theMLE componentof thescore,
thuspossiblychoosinga suboptimalnetwork. In fact,our

experimentsdescribedin Section5 show thatthisalgorithm
doesverybadlyin practice.

Instead,we can adaptthe BN learning algorithm to use
sources’distributionsinsteadof samples.

The main difference is in the way we compute the
MLE/MAP parametersfor eachstructurewe considerand
the way we computethe score(lines 2, 3, 6 and7 in Fig-
ure 1). Our algorithm relies on the observation that it is
not necessaryto have the actualdatato learna BN; it is
sufficient to have their empiricaldistribution. As we have
demonstratedin Section3, we cancomeup with saiddis-
tribution by applying the LinOP operatorto distributions
learnedby oursources.

We cantake advantageof the marginalizationpropertyof
LinOP to make computationmore efficient. As is noted
in [PW99], we canparameterizethe network in top-down
fashionby first computingthe distribution over the roots,
then joints over the secondlayer variablestogetherwith
theirparents,etc.Theconditionalprobabilitiescanbecom-
putedby dividing the appropriatemarginals(usingBayes
Law). In many cases,thatwould requireonly localcompu-
tationsin sources’BNs.

The MDL scorealsorequiresknowing only the empirical
distribution for � and � . Again, sincetheempiricaldis-
tribution is theLinOPdistribution if theweightsarechosen
correctly and the sourcesusedMLE or MAP (assuming
sufficient data)learning,it is possibleto scorethe candi-
datenetworkswithouthaving theactualdata.Furthermore,
themarginalsusedin theMLE scorearefamily marginals.
If thepreviousparameterizationstepis doneby computing
marginals,thenthesewill havealreadybeencomputed.

Although the MDL scorerequiresknowledgeof � , this
dependencemay not be strong,especiallyfor large � in
which casethesecondtermis dominatedby thelikelihood
termand � becomesa factorcommonto all networksand
canbe ignored. Otherwise,a roughapproximationof �
shouldsuffice.

As in traditional BN learning,cachingcan make the pa-
rameterizationandscoringof ‘neighboring’networksmore
efficient. Sincewe aremakingonly local changesto the
structure,only a few parameterswill needupdating.If an
arc is addedor removed,we only needto recomputenew
parametersfor thechild node,andif anarcis switched,we
only needto recomputeparametersfor the two nodesin-
volved. Also, sincetheseLinOP marginalsdon’t change,
cachingcomputedvaluesmayhelpto furtherspeedup fu-
turecomputations.
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5 Experiments

We implementedthe BN aggregationalgorithmin Matlab
usingKevin Murphy’sBayesNetToolboxÚ andexploredits
behavior by runningexperimentson thewell-known, real-
life Alarm network [BSCC89], a 37-nodenetwork usedas
partof a systemfor monitoringintensivecarepatients,and
on thesmaller8-nodeartificial Asianetwork [LS88].

In our experiments,we learnedtwo sourceBNs from data
sampledfrom theoriginal BN, thenaggregatedtheresults
usingour algorithm(AGGR). We hadboththesourcesand
theDM useMAP to parameterizetheir networks. In com-
putingLinOP, weusedthe � � asweights.Wecomparedour
proposal’s accuracy againstlearning from the combined
datasets(OPT) by plotting the Kullback-Leibler(KL) di-
vergence[Kul59] Û of eachdistribution from thetruedistri-
bution for differentvaluesof �%�Ü- �;- .
5.1 Sensitivity to �
We consideredthesituationwheretheDM knows thepri-
ors usedby the sourcesand adjustsfor the unduly large
numberof imaginarysamples.All sourcesandDMs used
theDirichlet prior definedby theuniform distribution and
an estimatedsamplesizeof 1. We varied the total num-
berof samples� between200and20000,having sources
seethe samenumberof samplesin somecasesand dif-
ferentnumbersin others.We conductedmultiple runsfor
eachsettingandaveragedthem. Figure2(a) plots the av-
eragesfor theAlarm network whensourceshaveequal � � .
Due to softwarelimitations,we hadto starteachstructure
searchwith the fully disconnectedgraphandusedno ran-
dom restartsfor this larger network. As canbe seen,in
spiteof the limited search,our algorithmdoesfairly well
asfar ascomingcloseto theoptimalandimproving on the
sources.Not surprisingly, the KL divergencedropsasthe
totalnumberof samplesincreases.Furthermore,theexper-
imentsonsourceswith different � � showednodependence
of the performanceof thealgorithmon the relative differ-
encein � � .
We ran similar experimentson Asia. Here,we variedthe
numberof samplesbetween200 and3000,with five runs
per setting. For eachrun, we usedfive randomrestarts.
Figure2(b) plots the averagefor eachsetting. The plot
shows that whenwe areable to explore the searchspace
sufficiently in thelearningandaggregationalgorithms,our
algorithmconsistentlyimprovesonthesourcesandclosely
approximatesto theoptimal.

Ý
Availableat http://www.cs.berkeley.edu/murphyk/bnt.html.Þ
The KL divergenceof distribution ß from à is definedas&bá�âyã à�6Âä´<GåçæyèZéyê á�ëì ê á�ëlí
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Figure2: Sensitivity to � (a) Alarm network results. (b)
Asianetwork results.

5.2 Sensitivity to the DM’ sestimation of �
We hypothesizedearlierthat the actualvalueof the DM’s
estimateof M doesnot matterall that much. To demon-
stratethis,we ranexperimentson theAsianetwork similar
to thoseabove,but leaving � fixedandvaryingtheDM’s
estimate1 orderof magnitudeabove andbelow � . Fig-
ures3(a)summarizestheresultsfor �%�(� {�{ .
Any approximationabove0.25ordersof magnitudebelow� providesimprovementover the sources.Estimatesbe-
low this madethecomplexity penaltysufficiently strongto
selectDAGs with fewer arcsthanthe original andunder-
fit thedata.On theotherhand,althoughoverestimating�
did notincreasetheKL distancefrom theoriginal,thereis a
dangerof extremeoverestimatescausingoverfitting. How-
ever, we did not find any increasein thecomplexity of the
aggregatenetworksfor the1 orderof magnituderangewe
considered;they remainedat8–9arcson average.

Figure3(b)summarizingtheresultsfor �î�V� {�{m{�{ shows
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Figure3: Asianetwork results(a)varyingDM’sestimateof � ( �î�V� {m{ ). (b) varyingDM’sestimateof � ( �î�V� {mï ).
(c) with differentsubpopulations.

that, aspredicted,the rangeof “slack” increaseswith � ;
the moresamplesseenby the sources,the lessimportant
theaccuracy of theDM’sestimate.

5.3 Subpopulations

Our algorithmperformswell whencombiningsourcedis-
tributionslearnedbasedonsamplesfrom differentsubpop-
ulations.To show this,wemodifiedtheAsianetwork to ac-
comodatetwo sources,adoctorpracticingin SanFrancisco
andonepracticingin Cincinnati. Theprobabilitydistribu-
tionsof thetwo root nodesin theAsia network, represent-
ing whethera patientsmokesandwhethershehasvisited
Asia would be significantlydifferent for the two doctors.
A patientfrom SanFranciscois lesslikely to bea smoker,
andonefrom Cincinnatiis lesslikely to have visitedAsia.
Thus,weaddedasourcevariableasdescribedin Section2,
gave the sourcesequalpriorsof seeingpatients,madethe
sourcevariableaparentof thetwo rootvariables,andgave
them appropriateCPDs. We drew � samplesfrom this
extendednetwork andhadeachsourcelearnfrom the ap-
propriatesubset,then usedAGGR to combinethe results
usingthe correct �Ù� and � . Figure3(c) plots the KL di-
vergenceof eachdistribution from theoriginal distribution
with the sourcevariablemarginalizedout. Becausethe
sourcesarelearningthedistributionsfor differentsubpop-
ulations,what they learn is relatively far from the overall
distribution. The DM takesadvantageof the information
from both sourcesandlearnsa BN that approximatesthe
originalmuchmorecloselythaneithersource.

5.4 Comparison to samplingalgorithm

In eachof the above experiments,we also comparedthe
performanceof ouralgorithmto thealternative intuitiveal-
gorithm SAMP we describedin Section4.2 in which we
sample� � � samplesfrom eachsource� ’s BN and learn
a BN from the combineddata. SAMP did very badly in

general,consistentlyworsethannot only AGGR, but worse
thanthesourcesaswell, oftenby anorderof magnitude.

6 RelatedWork

A wealthof work exists in statisticson aggregatingprob-
ability distributions. Good surveys of the field include
[GZ86, CW99]. Many of theearlier, axiomaticapproaches
sufferedfrom a lackof semanticalgrounding.For this rea-
son,the communitymoved towardsmodelingapproaches
instead. The most studiedapproachhasbeenthe supra-
Bayesianone, introducedin [Win68] and formally estab-
lished in [Mor74, Mor77]. Here, the DM hasa prior not
only over the variablesin the domain,but over the possi-
ble beliefsof the sourcesaswell. Sheaggregatesby us-
ing Bayesianconditioningto incorporatethe information
shereceivesfrom the sources.In fact, Proposition1 de-
rivesfrom this body of work. However, almostall of this
work hasbeenrestrictedto aggregatingbeliefsrepresented
aspointprobabilitiesor odds,or joint distributions.

Therehasbeensomerecentinterest,particularlyin AI, in
theproblemof aggregatingstructureddistributionsinclud-
ing [MA92, MA93, PW99]. But, like the early axiomatic
approachesin statistics,muchof this work focuseson at-
temptingto satisfy abstractpropertiessuchas preserving
sharedindependences,andoftenrunsinto impossibilityre-
sultsasa consequence.

In somesense,what we are doing could also be viewed
asensemblelearningfor BNs. Ensemblelearninginvolves
combiningtheresultsof differentweaklearnersto improve
classificationaccuracy. Becauseof its simplicity, LinOP is
often usedwithout justificationto do the actualcombina-
tion. Our resultsjustify this usewhen the weak learners
useMLE, MAP, or BN learning.

Anothernew areain AI thatbearssimilaritiesto our work
is that of on-line or incrementallearning of BNs (e.g.,
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[Bun91, LB94, FG97]). There,we aregivena continuous
streamof samplesandwe want to maintaina BN learned
from all thedatawehaveseensofar. Becausethestreamis
verylong,it is generallynotpossibleto maintainthefull set
of sufficientstatistics.Approachesrangefrom approximat-
ing the sufficient statisticsto restrictingthe network that
canbe learned.We essentiallydo theformerby assuming
thatthesufficientstatisticsfor thedataseenby eachsource
is encodedin its network. Cross-fertilizationbetweenthe
two fieldsmayproveprofitable.

7 Conclusion

We have presenteda new approachto belief aggregation.
We believe that we cannot formulate that problem pre-
cisely or measuresuccessof different techniqueswithout
answeringquestionsaboutthe way in which sources’be-
liefs were formulated. We argued that a framework in
which thesourcesareassumedto have learnedtheir distri-
butionsfrom datais bothintuitivelyplausibleandleadsto a
verynaturalformulationof theoptimalDM distribution—
onewhich would be learnedfrom the combineddatasets
— anda naturalsuccessmeasure— a distancefrom the
generating,‘true’ distribution.

Basedon the observation that LinOP is the appropriate
operatorfor this framework if sourcesandDM areMLE
learners,we presenteda LinOP-basedalgorithmto aggre-
gatebeliefsrepresentedby Bayesiannetworks.Ourprelim-
inary resultsshow thatthis algorithmperformsverywell.

Onedirectionof future work will involve finding waysto
relaxthevariousassumptions.For example,wewould like
to extendthe framework to allow for continuousvariables
andto allow for dependencebetweensources’samplesets.

In ourframework, theDM completelyignoressources’pri-
ors. This maybeappropriateif thepriorsareknown to be
unreliableor uninformative. However, the priors usedin
realapplicationsareofteninformativein andof themselves.
Thus,a seconddirectionwill involvefinding valid waysof
takingadvantageof sources’priors to improve thequality
of the aggregation. For example,if sourcesuseDirichlet
priorsandtheDM truststheir estimatedsamplesizes,she
maychoseto incorporatetheminto herestimateof � .
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